Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
from PyPDF2 import PdfReader
|
4 |
from docx import Document
|
5 |
import csv
|
@@ -10,6 +10,7 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain.vectorstores import FAISS
|
12 |
from huggingface_hub import login
|
|
|
13 |
|
14 |
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
|
15 |
|
@@ -17,15 +18,13 @@ huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
|
|
17 |
if huggingface_token:
|
18 |
login(token=huggingface_token)
|
19 |
|
20 |
-
#
|
21 |
@st.cache_resource
|
22 |
-
def
|
23 |
-
|
24 |
-
|
25 |
-
text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
26 |
-
return text_gen_pipeline
|
27 |
|
28 |
-
|
29 |
|
30 |
# Configuraci贸n del modelo de clasificaci贸n
|
31 |
@st.cache_resource
|
@@ -75,18 +74,16 @@ def classify_text(text):
|
|
75 |
return predicted_label
|
76 |
|
77 |
def translate(text, target_language):
|
78 |
-
template = '''
|
79 |
-
Por favor, traduzca el siguiente documento al {
|
80 |
<document>
|
81 |
-
{
|
82 |
</document>
|
83 |
Aseg煤rese de que la traducci贸n sea precisa y conserve el significado original del documento.
|
84 |
'''
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
translated_text = response[0]['generated_text']
|
89 |
-
|
90 |
return translated_text
|
91 |
|
92 |
def summarize(text, length):
|
@@ -97,10 +94,9 @@ def summarize(text, length):
|
|
97 |
</document>
|
98 |
Aseg煤rese de que el resumen sea conciso y conserve el significado original del documento.
|
99 |
'''
|
100 |
-
|
101 |
-
response =
|
102 |
-
summarized_text = response
|
103 |
-
|
104 |
return summarized_text
|
105 |
|
106 |
def handle_uploaded_file(uploaded_file):
|
@@ -131,21 +127,22 @@ def handle_uploaded_file(uploaded_file):
|
|
131 |
|
132 |
def main():
|
133 |
st.title("LexAIcon")
|
134 |
-
st.write("Puedes conversar con este chatbot basado en
|
135 |
|
136 |
if "messages" not in st.session_state:
|
137 |
-
st.session_state["messages"] = [
|
138 |
|
139 |
with st.sidebar:
|
140 |
st.text_input("HuggingFace Token", value=huggingface_token, type="password", key="huggingface_token")
|
141 |
st.caption("[Consigue un HuggingFace Token](https://huggingface.co/settings/tokens)")
|
142 |
|
143 |
for msg in st.session_state.messages:
|
144 |
-
st.
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
operation = st.radio("Selecciona una operaci贸n", ["Resumir", "Traducir", "Explicar"])
|
151 |
target_language = None
|
@@ -162,12 +159,12 @@ def main():
|
|
162 |
file_content = handle_uploaded_file(uploaded_file)
|
163 |
classification = classify_text(file_content)
|
164 |
vector_store = vector_stores[classification]
|
165 |
-
search_docs = vector_store.similarity_search(
|
166 |
context = " ".join([doc.page_content for doc in search_docs])
|
167 |
-
prompt_with_context = f"Contexto: {context}\n\nPregunta: {
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
elif operation == "Resumir":
|
172 |
if summary_length == "corto":
|
173 |
length = "de aproximadamente 50 palabras"
|
@@ -175,17 +172,16 @@ def main():
|
|
175 |
length = "de aproximadamente 100 palabras"
|
176 |
elif summary_length == "largo":
|
177 |
length = "de aproximadamente 500 palabras"
|
178 |
-
|
179 |
-
|
180 |
elif operation == "Traducir":
|
181 |
-
|
182 |
-
|
183 |
else:
|
184 |
-
|
185 |
-
|
|
|
186 |
|
187 |
-
st.session_state.messages.append({"role": "assistant", "content":
|
188 |
-
st.
|
189 |
|
190 |
if __name__ == "__main__":
|
191 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import InferenceClient
|
3 |
from PyPDF2 import PdfReader
|
4 |
from docx import Document
|
5 |
import csv
|
|
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain.vectorstores import FAISS
|
12 |
from huggingface_hub import login
|
13 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
14 |
|
15 |
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
|
16 |
|
|
|
18 |
if huggingface_token:
|
19 |
login(token=huggingface_token)
|
20 |
|
21 |
+
# Configuraci贸n del cliente de inferencia
|
22 |
@st.cache_resource
|
23 |
+
def load_inference_client():
|
24 |
+
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3")
|
25 |
+
return client
|
|
|
|
|
26 |
|
27 |
+
client = load_inference_client()
|
28 |
|
29 |
# Configuraci贸n del modelo de clasificaci贸n
|
30 |
@st.cache_resource
|
|
|
74 |
return predicted_label
|
75 |
|
76 |
def translate(text, target_language):
|
77 |
+
template = f'''
|
78 |
+
Por favor, traduzca el siguiente documento al {target_language}:
|
79 |
<document>
|
80 |
+
{text}
|
81 |
</document>
|
82 |
Aseg煤rese de que la traducci贸n sea precisa y conserve el significado original del documento.
|
83 |
'''
|
84 |
+
messages = [{"role": "user", "content": template}]
|
85 |
+
response = client.chat(messages)
|
86 |
+
translated_text = response.generated_text
|
|
|
|
|
87 |
return translated_text
|
88 |
|
89 |
def summarize(text, length):
|
|
|
94 |
</document>
|
95 |
Aseg煤rese de que el resumen sea conciso y conserve el significado original del documento.
|
96 |
'''
|
97 |
+
messages = [{"role": "user", "content": template}]
|
98 |
+
response = client.chat(messages)
|
99 |
+
summarized_text = response.generated_text
|
|
|
100 |
return summarized_text
|
101 |
|
102 |
def handle_uploaded_file(uploaded_file):
|
|
|
127 |
|
128 |
def main():
|
129 |
st.title("LexAIcon")
|
130 |
+
st.write("Puedes conversar con este chatbot basado en Mistral-7B-Instruct y subir archivos para que el chatbot los procese.")
|
131 |
|
132 |
if "messages" not in st.session_state:
|
133 |
+
st.session_state["messages"] = []
|
134 |
|
135 |
with st.sidebar:
|
136 |
st.text_input("HuggingFace Token", value=huggingface_token, type="password", key="huggingface_token")
|
137 |
st.caption("[Consigue un HuggingFace Token](https://huggingface.co/settings/tokens)")
|
138 |
|
139 |
for msg in st.session_state.messages:
|
140 |
+
st.write(f"**{msg['role'].capitalize()}:** {msg['content']}")
|
141 |
|
142 |
+
user_input = st.text_input("Introduce tu consulta:", "")
|
143 |
+
|
144 |
+
if user_input:
|
145 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
146 |
|
147 |
operation = st.radio("Selecciona una operaci贸n", ["Resumir", "Traducir", "Explicar"])
|
148 |
target_language = None
|
|
|
159 |
file_content = handle_uploaded_file(uploaded_file)
|
160 |
classification = classify_text(file_content)
|
161 |
vector_store = vector_stores[classification]
|
162 |
+
search_docs = vector_store.similarity_search(user_input)
|
163 |
context = " ".join([doc.page_content for doc in search_docs])
|
164 |
+
prompt_with_context = f"Contexto: {context}\n\nPregunta: {user_input}"
|
165 |
+
messages = [{"role": "user", "content": prompt_with_context}]
|
166 |
+
response = client.chat(messages)
|
167 |
+
bot_response = response.generated_text
|
168 |
elif operation == "Resumir":
|
169 |
if summary_length == "corto":
|
170 |
length = "de aproximadamente 50 palabras"
|
|
|
172 |
length = "de aproximadamente 100 palabras"
|
173 |
elif summary_length == "largo":
|
174 |
length = "de aproximadamente 500 palabras"
|
175 |
+
bot_response = summarize(user_input, length)
|
|
|
176 |
elif operation == "Traducir":
|
177 |
+
bot_response = translate(user_input, target_language)
|
|
|
178 |
else:
|
179 |
+
messages = [{"role": "user", "content": user_input}]
|
180 |
+
response = client.chat(messages)
|
181 |
+
bot_response = response.generated_text
|
182 |
|
183 |
+
st.session_state.messages.append({"role": "assistant", "content": bot_response})
|
184 |
+
st.write(f"**Assistant:** {bot_response}")
|
185 |
|
186 |
if __name__ == "__main__":
|
187 |
main()
|