manuelcozar55 commited on
Commit
de5e6eb
verified
1 Parent(s): 43eda77

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -1,17 +1,21 @@
1
  import streamlit as st
2
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
- from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
4
- from huggingface_hub import login
5
  from PyPDF2 import PdfReader
6
  from docx import Document
7
  import csv
8
  import json
9
  import os
10
  import torch
11
- from langchain.document_loaders import JSONLoader
12
  from langchain.text_splitter import RecursiveCharacterTextSplitter
13
  from langchain.embeddings import HuggingFaceEmbeddings
14
  from langchain.vectorstores import FAISS
 
 
 
 
 
 
 
15
 
16
  # Cargar el modelo y el pipeline de Hugging Face
17
  @st.cache_resource
@@ -54,7 +58,7 @@ def create_vector_store():
54
  vector_stores = {}
55
  for category, docs in json_documents.items():
56
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
57
- split_docs = [doc for doc in text_splitter.split_text(docs)]
58
  vector_stores[category] = FAISS.from_texts(split_docs, embeddings)
59
  return vector_stores
60
 
 
1
  import streamlit as st
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
 
 
3
  from PyPDF2 import PdfReader
4
  from docx import Document
5
  import csv
6
  import json
7
  import os
8
  import torch
 
9
  from langchain.text_splitter import RecursiveCharacterTextSplitter
10
  from langchain.embeddings import HuggingFaceEmbeddings
11
  from langchain.vectorstores import FAISS
12
+ from huggingface_hub import login
13
+
14
+ huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
15
+
16
+ # Realizar el inicio de sesi贸n de Hugging Face solo si el token est谩 disponible
17
+ if huggingface_token:
18
+ login(token=huggingface_token)
19
 
20
  # Cargar el modelo y el pipeline de Hugging Face
21
  @st.cache_resource
 
58
  vector_stores = {}
59
  for category, docs in json_documents.items():
60
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
61
+ split_docs = text_splitter.split_text(docs)
62
  vector_stores[category] = FAISS.from_texts(split_docs, embeddings)
63
  return vector_stores
64