Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
-
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
4 |
-
from huggingface_hub import login
|
5 |
from PyPDF2 import PdfReader
|
6 |
from docx import Document
|
7 |
import csv
|
8 |
import json
|
9 |
import os
|
10 |
import torch
|
11 |
-
from langchain.document_loaders import JSONLoader
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langchain.embeddings import HuggingFaceEmbeddings
|
14 |
from langchain.vectorstores import FAISS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Cargar el modelo y el pipeline de Hugging Face
|
17 |
@st.cache_resource
|
@@ -54,7 +58,7 @@ def create_vector_store():
|
|
54 |
vector_stores = {}
|
55 |
for category, docs in json_documents.items():
|
56 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
57 |
-
split_docs =
|
58 |
vector_stores[category] = FAISS.from_texts(split_docs, embeddings)
|
59 |
return vector_stores
|
60 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
|
|
|
|
|
3 |
from PyPDF2 import PdfReader
|
4 |
from docx import Document
|
5 |
import csv
|
6 |
import json
|
7 |
import os
|
8 |
import torch
|
|
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain.vectorstores import FAISS
|
12 |
+
from huggingface_hub import login
|
13 |
+
|
14 |
+
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
|
15 |
+
|
16 |
+
# Realizar el inicio de sesi贸n de Hugging Face solo si el token est谩 disponible
|
17 |
+
if huggingface_token:
|
18 |
+
login(token=huggingface_token)
|
19 |
|
20 |
# Cargar el modelo y el pipeline de Hugging Face
|
21 |
@st.cache_resource
|
|
|
58 |
vector_stores = {}
|
59 |
for category, docs in json_documents.items():
|
60 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
61 |
+
split_docs = text_splitter.split_text(docs)
|
62 |
vector_stores[category] = FAISS.from_texts(split_docs, embeddings)
|
63 |
return vector_stores
|
64 |
|