Spaces:
Runtime error
Runtime error
import tensorflow as tf | |
import gradio as gr | |
from scipy.ndimage import zoom | |
import cv2 | |
import numpy as np | |
# Load the pre-trained model | |
from huggingface_hub import from_pretrained_keras | |
model = from_pretrained_keras("manufy/mnist_model_keras") | |
#model = tf.keras.models.load_model('mnist_model.keras') | |
def recognize_digit(input): | |
image = input['layers'][0] | |
print("Type of image variable:", type(image)) | |
dimensions = image.shape | |
print("Dimensions of the image:", dimensions) | |
# Resize image to 28x28 using interpolation | |
resized_image = cv2.resize(image, (28, 28)) | |
# Convert image to grayscale | |
gray_image = cv2.cvtColor(resized_image, cv2.COLOR_RGBA2GRAY) | |
# Reshape the image to add a single channel dimension | |
final_image = np.expand_dims(gray_image, axis=-1) | |
print("Final Dimensions of the image:", final_image.shape) | |
#if image.shape[-1] == 3: # If the image has 3 color channels (RGB) | |
# image = image.mean(axis=-1) # Convert to grayscale | |
# Resize the image to 28x28 | |
#image = zoom(image, (28 / image.shape[0], 28 / image.shape[1])) | |
final_image = final_image.reshape((1, 28, 28, 1)).astype('float32') / 255 | |
prediction = model.predict(final_image) | |
return {str(i): float(prediction[0][i]) for i in range(10)}, input['layers'][0] | |
#final_image[0, :, :, 0] | |
#return '' | |
# Configure the Sketchpad | |
sketchpad = gr.Sketchpad() | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=recognize_digit, | |
inputs="sketchpad", | |
outputs=[gr.Label(num_top_classes=3), "image"], | |
live=True, | |
title="Digit Recognizer", | |
description="Draw a digit and let the model recognize it." | |
) | |
# Launch the interface | |
interface.launch() | |