Manu
Initial commit
af44b2b
import tensorflow as tf
import gradio as gr
from scipy.ndimage import zoom
import cv2
import numpy as np
# Load the pre-trained model
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("manufy/mnist_model_keras")
#model = tf.keras.models.load_model('mnist_model.keras')
def recognize_digit(input):
image = input['layers'][0]
print("Type of image variable:", type(image))
dimensions = image.shape
print("Dimensions of the image:", dimensions)
# Resize image to 28x28 using interpolation
resized_image = cv2.resize(image, (28, 28))
# Convert image to grayscale
gray_image = cv2.cvtColor(resized_image, cv2.COLOR_RGBA2GRAY)
# Reshape the image to add a single channel dimension
final_image = np.expand_dims(gray_image, axis=-1)
print("Final Dimensions of the image:", final_image.shape)
#if image.shape[-1] == 3: # If the image has 3 color channels (RGB)
# image = image.mean(axis=-1) # Convert to grayscale
# Resize the image to 28x28
#image = zoom(image, (28 / image.shape[0], 28 / image.shape[1]))
final_image = final_image.reshape((1, 28, 28, 1)).astype('float32') / 255
prediction = model.predict(final_image)
return {str(i): float(prediction[0][i]) for i in range(10)}, input['layers'][0]
#final_image[0, :, :, 0]
#return ''
# Configure the Sketchpad
sketchpad = gr.Sketchpad()
# Create the Gradio interface
interface = gr.Interface(
fn=recognize_digit,
inputs="sketchpad",
outputs=[gr.Label(num_top_classes=3), "image"],
live=True,
title="Digit Recognizer",
description="Draw a digit and let the model recognize it."
)
# Launch the interface
interface.launch()