mnist-custom-keras-model / sketchpad.py
Manu
Initial commit
af44b2b
raw
history blame contribute delete
860 Bytes
import gradio as gr
import numpy as np
import cv2
def classify(input):
image = input['layers'][0]
print("Type of image variable:", type(image))
dimensions = image.shape
print("Dimensions of the image:", dimensions)
# Resize image to 28x28 using interpolation
resized_image = cv2.resize(image, (28, 28))
# Convert image to grayscale
gray_image = cv2.cvtColor(resized_image, cv2.COLOR_RGBA2GRAY)
# Reshape the image to add a single channel dimension
final_image = np.expand_dims(gray_image, axis=-1)
print("Final image shape:", final_image.shape)
print("Final image:", final_image)
#input = np.reshape(input, (1, 28, 28))
#print(input)
return ''
label = gr.Label(num_top_classes=10)
interface = gr.Interface(fn=classify, inputs="sketchpad", outputs=label,
live=True)
interface.launch()