Spaces:
Running
Running
title: Table Markdown Metrics | |
emoji: π | |
colorFrom: blue | |
colorTo: red | |
sdk: gradio | |
sdk_version: 5.29.0 | |
app_file: app.py | |
pinned: false | |
tags: | |
- evaluate | |
- metric | |
- table | |
- markdown | |
description: >- | |
Table evaluation metrics for assessing the matching degree between predicted | |
and reference tables. It calculates precision, recall, and F1 score for table | |
data extraction or generation tasks. | |
# Metric Card for Table Markdown Metrics | |
## Metric Description | |
This metric evaluates the accuracy of table data extraction or generation by comparing predicted tables with reference tables. It calculates: | |
1. Precision: The ratio of correctly predicted cells to the total number of cells in the predicted table | |
2. Recall: The ratio of correctly predicted cells to the total number of cells in the reference table | |
3. F1 Score: The harmonic mean of precision and recall | |
## How to Use | |
This metric requires predictions and references as inputs in Markdown table format. | |
```python | |
>>> table_metric = evaluate.load("table_markdown") | |
>>> results = table_metric.compute( | |
... predictions="| | lobby | search | band | charge | chain ||--|--|--|--|--|--|| desire | 5 | 8 | 7 | 5 | 9 || wage | 1 | 5 | 3 | 8 | 5 |", | |
... references="| | lobby | search | band | charge | chain ||--|--|--|--|--|--|| desire | 1 | 6 | 7 | 5 | 9 || wage | 1 | 5 | 2 | 8 | 5 |" | |
... ) | |
>>> print(results) | |
{'precision': 0.7, 'recall': 0.7, 'f1': 0.7, 'true_positives': 7, 'false_positives': 3, 'false_negatives': 3} | |
``` | |
### Inputs | |
- **predictions** (`str`): Predicted table in Markdown format. | |
- **references** (`str`): Reference table in Markdown format. | |
### Output Values | |
- **precision** (`float`): Precision score. Range: [0,1] | |
- **recall** (`float`): Recall score. Range: [0,1] | |
- **f1** (`float`): F1 score. Range: [0,1] | |
- **true_positives** (`int`): Number of correctly predicted cells | |
- **false_positives** (`int`): Number of incorrectly predicted cells | |
- **false_negatives** (`int`): Number of cells that were not predicted | |
### Examples | |
Example - Complex table comparison: | |
```python | |
>>> table_metric = evaluate.load("table_markdown") | |
>>> results = table_metric.compute( | |
... predictions=""" | |
... | | lobby | search | band | | |
... |--|-------|--------|------| | |
... | desire | 5 | 8 | 7 | | |
... | wage | 1 | 5 | 3 | | |
... """, | |
... references=""" | |
... | | lobby | search | band | | |
... |--|-------|--------|------| | |
... | desire | 5 | 8 | 7 | | |
... | wage | 1 | 5 | 3 | | |
... """ | |
... ) | |
>>> print(results) | |
{'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'true_positives': 6, 'false_positives': 0, 'false_negatives': 0} | |
``` | |
## Limitations and Bias | |
1. The metric assumes that tables are well-formed in Markdown format | |
2. The comparison is case-sensitive | |
3. The metric does not handle merged cells or complex table structures | |
4. The metric treats each cell as a separate unit and does not consider the semantic meaning of the content | |
## Citation(s) | |
```bibtex | |
@article{ChineseChartExtractor, | |
title={Research on Chinese Chart Data Extraction Methods}, | |
author={Qiuping Ma,Hangshuo Bi,Qi Zhang,Xiaofan Zhao}, | |
journal={None}, | |
volume={0}, | |
pages={0--0}, | |
year={2025} | |
} | |
``` | |
## Further References | |
- [Markdown Tables](https://www.markdownguide.org/extended-syntax/#tables) | |
- [Table Structure Recognition](https://paperswithcode.com/task/table-structure-recognition) | |
- [Table Extraction](https://paperswithcode.com/task/table-extraction) |