File size: 1,449 Bytes
d362bfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import logging


logger = logging.getLogger(__name__)

logger.addHandler(logging.StreamHandler())


class LocalModel:
    def __init__(self, model_name: str, max_tokens: int, temperature: float):
        self.max_tokens = max_tokens
        self.temperature = temperature
        # Load the model locally. For a demo, you may choose a lighter model if needed.
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name, torch_dtype=torch.float16
        )
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.pipeline = pipeline(
            "text-generation",
            model=self.model,
            tokenizer=self.tokenizer,
        )

    def __call__(self, prompt: str, **kwargs) -> str:
        # Adjust the call signature as needed by your agent
        result = self.pipeline(
            prompt,
            max_new_tokens=self.max_tokens,
            temperature=self.temperature,
            **kwargs,
        )

        output = result[0]["generated_text"]
        logger.info(f"Model output: {output}")
        # Assuming the result is a list with one dict containing the generated text:
        return result[0]["generated_text"]


if __name__ == "__main__":
    local_model = LocalModel("Qwen/Qwen2.5-1.5B", max_tokens=100, temperature=0.5)
    output = local_model("A big foot")

    print(output)