marcusinect's picture
Token needed, correlation tool
d362bfa
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
import numpy as np
from typing import List, Union
from local_model import LocalModel
import logging
from dotenv import load_dotenv
import os
from Gradio_UI import GradioUI
logger = logging.getLogger(__name__)
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
@tool
def compute_correlation(
arg1: List[Union[float, int]], arg2: List[Union[float, int]]
) -> str: # it's import to specify the return type
# Keep this format for the description / args / args description but feel free to modify the tool
"""A tool to compute the correlation between two lists of values.
Args:
arg1: a first list of values.
arg2: a second list of values.
"""
corr = str(float(np.corrcoef(arg1, arg2)[0, 1]))
logger.info(f"Got correlation value: {corr}")
return corr
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# model = LocalModel("Qwen/Qwen2.5-1.5B", max_tokens=100, temperature=0.5)
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id="Qwen/Qwen2.5-Coder-32B-Instruct", # it is possible that this model may be overloaded
token=HF_TOKEN,
custom_role_conversions=None,
)
with open("prompts.yaml", "r") as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[
final_answer,
compute_correlation,
], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates,
)
GradioUI(agent).launch()