marianeft's picture
Initial commit
defe71f
raw
history blame
4.58 kB
import streamlit as st
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import requests
import pandas as pd
import altair as alt
from collections import OrderedDict
from nltk.tokenize import sent_tokenize
import trafilatura
import validators
# Load the punkt tokenizer from nltk
import nltk
nltk.download('punkt')
# Load model and tokenizer
model_name = 'dejanseo/sentiment'
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Sentiment labels as textual descriptions
sentiment_labels = {
0: "very positive",
1: "positive",
2: "somewhat positive",
3: "neutral",
4: "somewhat negative",
5: "negative",
6: "very negative"
}
# Background colors for sentiments
background_colors = {
"very positive": "rgba(0, 255, 0, 0.5)",
"positive": "rgba(0, 255, 0, 0.3)",
"somewhat positive": "rgba(0, 255, 0, 0.1)",
"neutral": "rgba(128, 128, 128, 0.1)",
"somewhat negative": "rgba(255, 0, 0, 0.1)",
"negative": "rgba(255, 0, 0, 0.3)",
"very negative": "rgba(255, 0, 0, 0.5)"
}
# Function to get text content from a URL, restricted to Medium stories/articles
def get_text_from_url(url):
if not validators.url(url):
return None, "Invalid URL"
if "medium.com/" not in url: # Check if it's a Medium URL
return None, "URL is not a Medium story/article."
try:
downloaded = trafilatura.fetch_url(url)
if downloaded:
return trafilatura.extract(downloaded), None
else:
return None, "Could not download content from URL."
except Exception as e:
return None, f"Error extracting text: {e}"
# ... (rest of the functions: classify_text, classify_long_text, classify_sentences remain the same)
# Streamlit UI
st.title("Sentiment Classification Model by DEJAN (Medium Only)")
url = st.text_input("Enter Medium URL:")
if url:
text, error_message = get_text_from_url(url)
if error_message:
st.error(error_message) # Display error message
elif text:
# ... (rest of the analysis and display code remains the same)
scores, chunk_scores_list, chunks = classify_long_text(text)
scores_dict = {sentiment_labels[i]: scores[i] for i in range(len(sentiment_labels))}
# Ensure the exact order of labels in the graph
sentiment_order = [
"very positive", "positive", "somewhat positive",
"neutral",
"somewhat negative", "negative", "very negative"
]
ordered_scores_dict = OrderedDict((label, scores_dict[label]) for label in sentiment_order)
# Prepare the DataFrame and reindex
df = pd.DataFrame.from_dict(ordered_scores_dict, orient='index', columns=['Likelihood']).reindex(sentiment_order)
# Use Altair to plot the bar chart
chart = alt.Chart(df.reset_index()).mark_bar().encode(
x=alt.X('index', sort=sentiment_order, title='Sentiment'),
y='Likelihood'
).properties(
width=600,
height=400
)
st.altair_chart(chart, use_container_width=True)
# Display each chunk and its own chart
for i, (chunk_scores, chunk) in enumerate(zip(chunk_scores_list, chunks)):
chunk_scores_dict = {sentiment_labels[j]: chunk_scores[j] for j in range(len(sentiment_labels))}
ordered_chunk_scores_dict = OrderedDict((label, chunk_scores_dict[label]) for label in sentiment_order)
df_chunk = pd.DataFrame.from_dict(ordered_chunk_scores_dict, orient='index', columns=['Likelihood']).reindex(sentiment_order)
chunk_chart = alt.Chart(df_chunk.reset_index()).mark_bar().encode(
x=alt.X('index', sort=sentiment_order, title='Sentiment'),
y='Likelihood'
).properties(
width=600,
height=400
)
st.write(f"Chunk {i + 1}:")
st.write(chunk)
st.altair_chart(chunk_chart, use_container_width=True)
# Sentence-level classification with background colors
st.write("Extracted Text with Sentiment Highlights:")
sentence_scores = classify_sentences(text)
for sentence, sentiment in sentence_scores:
bg_color = background_colors[sentiment]
st.markdown(f'<span style="background-color: {bg_color}">{sentence}</span>', unsafe_allow_html=True)
# No 'else' needed here, as the error message is already handled above.