Spaces:
Running
Running
File size: 14,926 Bytes
46fe9ce 083415e 46fe9ce 083415e 7a41a9e 56227e8 7a41a9e 083415e 56227e8 7a41a9e 083415e 7a41a9e 8f31f6f 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 8f31f6f 083415e 7a41a9e 083415e 7a41a9e 8f31f6f 083415e 7a41a9e 8f31f6f 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 8f31f6f 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 8f31f6f 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 56227e8 7a41a9e 8f31f6f 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 56227e8 083415e 7a41a9e 8f31f6f 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 083415e 7a41a9e 96688d4 56227e8 7a41a9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "marimo",
# "numpy==2.2.5",
# "pandas==2.2.3",
# "polars==1.29.0",
# ]
# ///
import marimo
__generated_with = "0.13.10"
app = marimo.App()
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# DataFrames
Author: [*Raine Hoang*](https://github.com/Jystine)
In this tutorial, we will go over the central data structure for structured data, DataFrames. There are a multitude of packages that work with DataFrames, but we will be focusing on the way Polars uses them the different options it provides.
/// Note
The following tutorial has been adapted from the Polars [documentation](https://docs.pola.rs/api/python/stable/reference/dataframe/index.html).
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
## Defining a DataFrame
At the most basic level, all that you need to do in order to create a DataFrame in Polars is to use the .DataFrame() method and pass in some data into the data parameter. However, there are restrictions as to what exactly you can pass into this method.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""### What Can Be a DataFrame?""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
There are [5 data types](https://github.com/pola-rs/polars/blob/py-1.29.0/py-polars/polars/dataframe/frame.py#L197) that can be converted into a DataFrame.
1. Dictionary
2. Sequence
3. NumPy Array
4. Series
5. Pandas DataFrame
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
#### Dictionary
Dictionaries are structures that store data as `key:value` pairs. Let's say we have the following dictionary:
"""
)
return
@app.cell
def _():
dct_data = {"col1": [1, 2, 3, 4], "col2": ["a", "b", "c", "d"], "col3": [1.2, 4.2, 6.4, 3.7]}
dct_data
return (dct_data,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""In order to convert this dictionary into a DataFrame, we simply need to pass it into the data parameter in the `.DataFrame()` method like so.""")
return
@app.cell
def _(dct_data, pl):
dct_df = pl.DataFrame(data = dct_data)
dct_df
return (dct_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
In this case, Polars turned each of the lists in the dictionary into a column in the DataFrame.
The other data structures will follow a similar pattern when converting them to DataFrames.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
##### Sequence
Sequences are data structures that contain collections of items, which can be accessed using its index. Examples of sequences are lists, tuples, and strings. We will be using a list of lists in order to demonstrate how to convert a sequence in a DataFrame.
"""
)
return
@app.cell
def _():
seq_data = [[1, 2, 3, 4], ["a", "b", "c", "d"], [1.2, 4.2, 6.4, 3.7]]
seq_data
return (seq_data,)
@app.cell
def _(pl, seq_data):
seq_df = pl.DataFrame(data = seq_data)
seq_df
return (seq_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Notice that since we didn't specify the column names, Polars automatically named them `column_0`, `column_1`, and `column_2`. Later, we will show you how to specify the names of the columns.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
##### NumPy Array
NumPy arrays are considered a sequence of items that can also be accessed using its index. An important thing to note is that all of the items in an array must have the same data type.
"""
)
return
@app.cell
def _(np):
arr_data = np.array([np.array([1, 2, 3, 4]), np.array(["a", "b", "c", "d"]), np.array([1.2, 4.2, 6.4, 3.7])])
arr_data
return (arr_data,)
@app.cell
def _(arr_data, pl):
arr_df = pl.DataFrame(data = arr_data)
arr_df
return (arr_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Notice that each inner array is a row in the DataFrame, not a column like the previous methods discussed. Later, we will go over how to tell Polars if we the information in the data structure to be presented as rows or columns.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
##### Series
Series are a way to store a single column in a DataFrame and all entries in a series must have the same data type. You can combine these series together to form one DataFrame.
"""
)
return
@app.cell
def _(pl):
pl_series = [pl.Series([1, 2, 3, 4]), pl.Series(["a", "b", "c", "d"]), pl.Series([1.2, 4.2, 6.4, 3.7])]
pl_series
return (pl_series,)
@app.cell
def _(pl, pl_series):
series_df = pl.DataFrame(data = pl_series)
series_df
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
##### Pandas DataFrame
Another popular package that utilizes DataFrames is pandas. By passing in a pandas DataFrame into .DataFrame(), you can easily convert it into a Polars DataFrame.
"""
)
return
@app.cell
def _(dct_data, pd):
# Creates a DataFrame from a dictionary using pandas package
pd_df = pd.DataFrame(data = dct_data)
pd_df
return (pd_df,)
@app.cell
def _(pd_df, pl):
# Takes pandas DataFrame and converts it into Polars DataFrame
pl_df = pl.DataFrame(data = pd_df)
pl_df
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Now that we've looked over what can be converted into a DataFrame and the basics of it, let's look at the structure of the DataFrame.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## DataFrame Structure
Let's recall one of the DataFrames we defined earlier.
"""
)
return
@app.cell
def _(dct_df):
dct_df
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We can see that this DataFrame has 4 rows and 3 columns as indicated by the text beneath the DataFrame. Each column has a name that can be used to access the data within that column. In this case, the names are: "col1", "col2", and "col3". Below the column name, there is text that indicates the data type stored within that column. "col1" has the text "i64" underneath its name, meaning that that column stores integers. "col2" stores strings as seen by the "str" under the column name. Finally, "col3" stores floats as it has "f64" under the column name. Polars will automatically assume the data types stored in each column, but we will go over a way to specify it later in this tutorial. Each column can only hold one data type at a time, so you can't have a string and an integer in the same column.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Parameters
On top of the "data" parameter, there are 6 additional parameters you can specify:
1. schema
2. schema_overrides
3. strict
4. orient
5. infer_schema_length
6. nan_to_null
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
#### Schema
Let's recall the DataFrame we created using a sequence.
"""
)
return
@app.cell
def _(seq_df):
seq_df
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We can see that the column names and data type were inferred by Polars. The schema parameter allows us to specify the column names and data type we want for each column. There are 3 ways you can use this parameter. The first way involves using a dictionary to define the following key value pair: column name:data type.""")
return
@app.cell
def _(pl, seq_data):
pl.DataFrame(seq_data, schema = {"integers": pl.Int16, "strings": pl.String, "floats": pl.Float32})
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""You can also do this using a list of (column name, data type) pairs instead of a dictionary.""")
return
@app.cell
def _(pl, seq_data):
pl.DataFrame(seq_data, schema = [("integers", pl.Int16), ("strings", pl.String), ("floats", pl.Float32)])
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Notice how both the column names and the data type (text underneath the column name) is different from the original `seq_df`. If you only wanted to specify the column names and let Polars assume the data type, you can do so using a list of column names.""")
return
@app.cell
def _(pl, seq_data):
pl.DataFrame(seq_data, schema = ["integers", "strings", "floats"])
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""The text under the column names is different from the previous two DataFrames we created since we didn't explicitly tell Polars what data type we wanted in each column.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
#### Schema_Overrides
If you only wanted to specify the data type of specific columns and let Polars infer the rest, you can use the schema_overrides parameter for that. This parameter requires that you pass in a dictionary where the key value pair is column name:data type. Unlike the schema parameter, the column name must match the name already present in the DataFrame as that is how Polars will identify which column you want to specify the data type. If you use a column name that doesn't already exist, Polars won't be able to change the data type.
"""
)
return
@app.cell
def _(pl, seq_data):
pl.DataFrame(seq_data, schema_overrides = {"column_0": pl.Int16})
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Notice here that only the data type in the first column changed while Polars inferred the rest.
It is important to note that if you only use the schema_overrides parameter, you are limited to how much you can change the data type. In the example above, we were able to change the data type from int32 to int16 without any further parameters since the data type is still an integer. However, if we wanted to change the first column to be a string, we would get an error as Polars has already strictly set the schema to only take in integer values.
"""
)
return
@app.cell
def _(pl, seq_data):
try:
pl.DataFrame(seq_data, schema_overrides = {"column_0": pl.String})
except Exception as e:
print(f"Error: {e}")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""If we wanted to use schema_override to completely change the data type of the column, we need an additional parameter: strict.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
#### Strict
The strict parameter allows you to specify if you want a column's data type to be enforced with flexibility or not. When set to `True`, Polars will raise an error if there is a data type that doesn't match the data type the column is expecting. It will not attempt to type cast it to the correct data type as Polars prioritizes that all the data can be converted without any loss or error. When set to `False`, Polars will attempt to type cast the data into the data type the column wants. If it is unable to successfully convert the data type, the value will be replaced with a null value.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Let's see an example of what happens when strict is set to `True`. The cell below should show an error.""")
return
@app.cell
def _(pl):
data = [[1, "a", 2]]
try:
pl.DataFrame(data = data, strict = True)
except Exception as e:
print(f"Error: {e}")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Now let's try setting strict to `False`.""")
return
@app.cell
def _(pl, seq_data):
pl.DataFrame(seq_data, schema_overrides = {"column_0": pl.String}, strict = False)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Since we allowed for Polars to change the schema by setting strict to `False`, we were able to cast the first column to be strings.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
#### Orient
Let's recall the DataFrame we made by using an array and the data used to make it.
"""
)
return
@app.cell
def _(arr_data):
arr_data
return
@app.cell
def _(arr_df):
arr_df
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Notice how Polars decided to make each inner array a row in the DataFrame. If we wanted to make it so that each inner array was a column instead of a row, all we would need to do is pass `"col"` into the orient parameter.""")
return
@app.cell
def _(arr_data, pl):
pl.DataFrame(data = arr_data, orient = "col")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""If we wanted to do the opposite, then we pass `"row"` into the orient parameter.""")
return
@app.cell
def _(seq_df):
seq_df
return
@app.cell
def _(pl, seq_data):
pl.DataFrame(data = seq_data, orient = "row")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
#### Infer_Schema_Length
Without setting the schema ourselves, Polars uses the data provided to infer the data types of the columns. It does this by looking at each of the rows in the data provided. You can specify to Polars how many rows to look at by using the infer_schema_length parameter. For example, if you were to set this parameter to 5, then Polars would use the first 5 rows to infer the schema.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
#### NaN_To_Null
If there are np.nan values in the data, you can convert them to null values by setting the nan_to_null parameter to `True`.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Summary
DataFrames are a useful data structure that can be used to organize and perform additional analysis on your data. In this notebook, we have learned how to define DataFrames, what can be a DataFrame, the structure of it, and additional parameters you can set while creating it.
In order to create a DataFrame, you pass your data into the .DataFrame() method through the data parameter. The data you pass through must be either a dictionary, sequence, array, series, or pandas DataFrame. Once defined, the DataFrame will separate the data into different columns and the data within the column must have the same data type. There exists additional parameters besides data that allows you to further customize the ending DataFrame. Some examples of these are orient, strict, and infer_schema_length.
"""
)
return
@app.cell
def _():
import marimo as mo
import polars as pl
import numpy as np
import pandas as pd
return mo, np, pd, pl
if __name__ == "__main__":
app.run()
|