Spaces:
Running
Running
File size: 17,239 Bytes
5a60aba 7c8994a 5a60aba 7c8994a 5a60aba 50fbb8e 5a60aba 7c8994a 5a60aba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "polars==1.18.0",
# "marimo",
# ]
# ///
import marimo
__generated_with = "0.12.0"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Working with Columns
Author: [Deb Debnath](https://github.com/debajyotid2)
**Note**: The following tutorial has been adapted from the Polars [documentation](https://docs.pola.rs/user-guide/expressions/expression-expansion).
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Expressions
Data transformations are sometimes complicated, or involve massive computations which are time-consuming. You can make a small version of the dataset with the schema you are trying to work your transformation into. But there is a better way to do it in Polars.
A Polars expression is a lazy representation of a data transformation. "Lazy" means that the transformation is not eagerly (immediately) executed.
Expressions are modular and flexible. They can be composed to build more complex expressions. For example, to calculate speed from distance and time, you can have an expression as:
"""
)
return
@app.cell
def _(pl):
speed_expr = pl.col("distance") / (pl.col("time"))
speed_expr
return (speed_expr,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Expression expansion
Expression expansion lets you write a single expression that can expand to multiple different expressions. So rather than repeatedly defining separate expressions, you can avoid redundancy while adhering to clean code principles (Do not Repeat Yourself - [DRY](https://en.wikipedia.org/wiki/Don%27t_repeat_yourself)). Since expressions are reusable, they aid in writing concise code.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md("""For the examples in this notebook, we will use a sliver of the *AI4I 2020 Predictive Maintenance Dataset*. This dataset comprises of measurements taken from sensors in industrial machinery undergoing preventive maintenance checks - basically being tested for failure conditions.""")
return
@app.cell
def _(StringIO, pl):
data_csv = """
Product ID,Type,Air temperature,Process temperature,Rotational speed,Tool wear,Machine failure,TWF,HDF,PWF,OSF,RNF
L51172,L,302.3,311.3,1614,129,0,0,1,0,0,0
M22586,M,300.8,311.9,1761,113,1,0,0,0,1,0
L51639,L,302.6,310.4,1743,191,0,1,0,0,0,1
L50250,L,300,309.1,1631,110,0,0,0,1,0,0
M20109,M,303.4,312.9,1422,63,1,0,0,0,0,0
"""
data = pl.read_csv(StringIO(data_csv))
data
return data, data_csv
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Function `col`
The function `col` is used to refer to one column of a dataframe. It is one of the fundamental building blocks of expressions in Polars. `col` is also really handy in expression expansion.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Explicit expansion by column name
The simplest form of expression expansion happens when you provide multiple column names to the function `col`.
Say you wish to convert all temperature values in deg. Kelvin (K) to deg. Fahrenheit (F). One way to do this would be to define individual expressions for each column as follows:
"""
)
return
@app.cell
def _(data, pl):
exprs = [
((pl.col("Air temperature") - 273.15) * 1.8 + 32).round(2),
((pl.col("Process temperature") - 273.15) * 1.8 + 32).round(2)
]
result = data.with_columns(exprs)
result
return exprs, result
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Expression expansion can reduce this verbosity when you list the column names you want the expression to expand to inside the `col` function. The result is the same as before.""")
return
@app.cell
def _(data, pl, result):
result_2 = data.with_columns(
(
(pl.col(
"Air temperature",
"Process temperature"
)
- 273.15) * 1.8 + 32
).round(2)
)
result_2.equals(result)
return (result_2,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""In this case, the expression that does the temperature conversion is expanded to a list of two expressions. The expansion of the expression is predictable and intuitive.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Expansion by data type
Can we do better than explicitly writing the names of every columns we want transformed? Yes.
If you provide data types instead of column names, the expression is expanded to all columns that match one of the data types provided.
The example below performs the exact same computation as before:
"""
)
return
@app.cell
def _(data, pl, result):
result_3 = data.with_columns(((pl.col(pl.Float64) - 273.15) * 1.8 + 32).round(2))
result_3.equals(result)
return (result_3,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
However, you should be careful to ensure that the transformation is only applied to the columns you want. For ensuring this it is important to know the schema of the data beforehand.
`col` accepts multiple data types in case the columns you need have more than one data type.
"""
)
return
@app.cell
def _(data, pl, result):
result_4 = data.with_columns(
(
(pl.col(
pl.Float32,
pl.Float64,
)
- 273.15) * 1.8 + 32
).round(2)
)
result.equals(result_4)
return (result_4,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Expansion by pattern matching
`col` also accepts regular expressions for selecting columns by pattern matching. Regular expressions start and end with ^ and $, respectively.
"""
)
return
@app.cell
def _(data, pl):
data.select(pl.col("^.*temperature$"))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Regular expressions can be combined with exact column names.""")
return
@app.cell
def _(data, pl):
data.select(pl.col("^.*temperature$", "Tool wear"))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""**Note**: You _cannot_ mix strings (exact names, regular expressions) and data types in a `col` function.""")
return
@app.cell
def _(data, pl):
try:
data.select(pl.col("Air temperature", pl.Float64))
except TypeError as err:
print("TypeError:", err)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Selecting all columns
To select all columns, you can use the `all` function.
"""
)
return
@app.cell
def _(data, pl):
result_6 = data.select(pl.all())
result_6.equals(data)
return (result_6,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Excluding columns
There are scenarios where we might want to exclude specific columns from the ones selected by building expressions, e.g. by the `col` or `all` functions. For this purpose, we use the function `exclude`, which accepts exactly the same types of arguments as `col`:
"""
)
return
@app.cell
def _(data, pl):
data.select(pl.all().exclude("^.*F$"))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""`exclude` can also be used after the function `col`:""")
return
@app.cell
def _(data, pl):
data.select(pl.col(pl.Int64).exclude("^.*F$"))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Column renaming
When applying a transformation with an expression to a column, the data in the column gets overwritten with the transformed data. However, this might not be the intended outcome in all situations - ideally you would want to store transformed data in a new column. Applying multiple transformations to the same column at the same time without renaming leads to errors.
"""
)
return
@app.cell
def _(data, pl):
from polars.exceptions import DuplicateError
try:
data.select(
(pl.col("Air temperature") - 273.15) * 1.8 + 32, # This would be named "Air temperature"...
pl.col("Air temperature") - 273.15, # And so would this.
)
except DuplicateError as err:
print("DuplicateError:", err)
return (DuplicateError,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Renaming a single column with `alias`
The function `alias` lets you rename a single column:
"""
)
return
@app.cell
def _(data, pl):
data.select(
((pl.col("Air temperature") - 273.15) * 1.8 + 32).round(2).alias("Air temperature [F]"),
(pl.col("Air temperature") - 273.15).round(2).alias("Air temperature [C]")
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Prefixing and suffixing column names
As `alias` renames a single column at a time, it cannot be used during expression expansion. If it is sufficient add a static prefix or a static suffix to the existing names, you can use the functions `name.prefix` and `name.suffix` with `col`:
"""
)
return
@app.cell
def _(data, pl):
data.select(
((pl.col("Air temperature") - 273.15) * 1.8 + 32).round(2).name.prefix("deg F "),
(pl.col("Process temperature") - 273.15).round(2).name.suffix(" C"),
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Dynamic name replacement
If a static prefix/suffix is not enough, use `name.map`. `name.map` requires a function that transforms column names to the desired. The transformation should lead to unique names to avoid `DuplicateError`.
"""
)
return
@app.cell
def _(data, pl):
# There is also `.name.to_lowercase`, so this usage of `.map` is moot.
data.select(pl.col("^.*F$").name.map(str.lower))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Programmatically generating expressions
For this example, we will first create four additional columns with the rolling mean temperatures of the two temperature columns. Such transformations are sometimes used to create additional features for machine learning models or data analysis.
"""
)
return
@app.cell
def _(data, pl):
ext_temp_data = data.with_columns(
pl.col("^.*temperature$").rolling_mean(window_size=2).round(2).name.prefix("Rolling mean ")
).select(pl.col("^.*temperature*$"))
ext_temp_data
return (ext_temp_data,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Now, suppose we want to calculate the difference between the rolling mean and actual temperatures. We cannot use expression expansion here as we want differences between specific columns.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""At first, you may think about using a `for` loop:""")
return
@app.cell
def _(ext_temp_data, pl):
_result = ext_temp_data
for col_name in ["Air", "Process"]:
_result = _result.with_columns(
(abs(pl.col(f"Rolling mean {col_name} temperature") - pl.col(f"{col_name} temperature")))
.round(2).alias(f"Delta {col_name} temperature")
)
_result
return (col_name,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Using a `for` loop is functional, but not scalable, as each expression needs to be defined in an iteration and executed serially. Instead we can use a generator in Python to programmatically create all expressions at once. In conjunction with the `with_columns` context, we can take advantage of parallel execution of computations and query optimization from Polars.""")
return
@app.cell
def _(ext_temp_data, pl):
def delta_expressions(colnames: list[str]) -> pl.Expr:
for col_name in colnames:
yield (abs(pl.col(f"Rolling mean {col_name} temperature") - pl.col(f"{col_name} temperature"))
.round(2).alias(f"Delta {col_name} temperature"))
ext_temp_data.with_columns(delta_expressions(["Air", "Process"]))
return (delta_expressions,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## More flexible column selections
For more flexible column selections, you can use column selectors from `selectors`. Column selectors allow for more expressiveness in the way you specify selections. For example, column selectors can perform the familiar set operations of union, intersection, difference, etc. We can use the union operation with the functions `string` and `ends_with` to select all string columns and the columns whose names end with "`_high`":
"""
)
return
@app.cell
def _(data):
import polars.selectors as cs
data.select(cs.string() | cs.ends_with("F"))
return (cs,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Likewise, you can pick columns based on the category of the type of data, offering more flexibility than the `col` function. As an example, `cs.numeric` selects numeric data types (including `pl.Float32`, `pl.Float64`, `pl.Int32`, etc.) or `cs.temporal` for all dates, times and similar data types.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Combining selectors with set operations
Multiple selectors can be combined using set operations and the usual Python operators:
| Operator | Operation |
|:--------:|:--------------------:|
| `A | B` | Union |
| `A & B` | Intersection |
| `A - B` | Difference |
| `A ^ B` | Symmetric difference |
| `~A` | Complement |
For example, to select all failure indicator variables excluding the failure variables due to wear, we can perform a set difference between the column selectors.
"""
)
return
@app.cell
def _(cs, data):
data.select(cs.contains("F") - cs.contains("W"))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Resolving operator ambiguity
Expression functions can be chained on top of selectors:
"""
)
return
@app.cell
def _(cs, data, pl):
ext_failure_data = data.select(cs.contains("F")).cast(pl.Boolean)
ext_failure_data
return (ext_failure_data,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
However, operators that perform set operations on column selectors operate on both selectors and on expressions. For example, the operator `~` on a selector represents the set operation “complement” and on an expression represents the Boolean operation of negation.
For instance, if you want to negate the Boolean values in the columns “HDF”, “OSF”, and “RNF”, at first you would think about using the `~` operator with the column selector to choose all failure variables containing "W". Because of the operator ambiguity here, the columns that are not of interest are selected here.
"""
)
return
@app.cell
def _(cs, ext_failure_data):
ext_failure_data.select((~cs.ends_with("WF")).name.prefix("No"))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""To resolve the operator ambiguity, we use `as_expr`:""")
return
@app.cell
def _(cs, ext_failure_data):
ext_failure_data.select((~cs.ends_with("WF").as_expr()).name.prefix("No"))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Debugging selectors
The function `cs.is_selector` helps check whether a complex chain of selectors and operators ultimately results in a selector. For example, to resolve any ambiguity with the selector in the last example, we can do:
"""
)
return
@app.cell
def _(cs):
cs.is_selector(~cs.ends_with("WF").as_expr())
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Additionally we can use `expand_selector` to see what columns a selector expands into. Note that for this function we need to provide additional context in the form of the dataframe.""")
return
@app.cell
def _(cs, ext_failure_data):
cs.expand_selector(
ext_failure_data,
cs.ends_with("WF"),
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### References
1. AI4I 2020 Predictive Maintenance Dataset [Dataset]. (2020). UCI Machine Learning Repository. ([link](https://doi.org/10.24432/C5HS5C)).
2. Polars documentation ([link](https://docs.pola.rs/user-guide/expressions/expression-expansion/#more-flexible-column-selections))
"""
)
return
@app.cell(hide_code=True)
def _():
import csv
import marimo as mo
import polars as pl
from io import StringIO
return StringIO, csv, mo, pl
if __name__ == "__main__":
app.run()
|