Spaces:
Running
Running
File size: 6,433 Bytes
48f7de2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# ]
# ///
import marimo
__generated_with = "0.11.0"
app = marimo.App()
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Sets
Probability is the study of "events", assigning numerical values to how likely
events are to occur. For example, probability lets us quantify how likely it is for it to rain or shine on a given day.
Typically we reason about _sets_ of events. In mathematics,
a set is a collection of elements, with no element included more than once.
Elements can be any kind of object.
For example:
- โ๏ธ Weather events: $\{\text{Rain}, \text{Overcast}, \text{Clear}\}$
- ๐ฒ Die rolls: $\{1, 2, 3, 4, 5, 6\}$
- ๐ช Pairs of coin flips = $\{ \text{(Heads, Heads)}, \text{(Heads, Tails)}, \text{(Tails, Tails)} \text{(Tails, Heads)}\}$
Sets are the building blocks of probability, and will arise frequently in our study.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""## Set operations""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""In Python, sets are made with the `set` function:""")
return
@app.cell
def _():
A = set([2, 3, 5, 7])
A
return (A,)
@app.cell
def _():
B = set([0, 1, 2, 3, 5, 8])
B
return (B,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Below we explain common operations on sets.
_**Try it!** Try modifying the definitions of `A` and `B` above, and see how the results change below._
The **union** $A \cup B$ of sets $A$ and $B$ is the set of elements in $A$, $B$, or both.
"""
)
return
@app.cell
def _(A, B):
A | B
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""The **intersection** $A \cap B$ is the set of elements in both $A$ and $B$""")
return
@app.cell
def _(A, B):
A & B
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""The **difference** $A \setminus B$ is the set of elements in $A$ that are not in $B$.""")
return
@app.cell
def _(A, B):
A - B
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
### ๐ฌ An interactive example
Here's a simple example that classifies TV shows into sets by genre, and uses these sets to recommend shows to a user based on their preferences.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
viewer_type = mo.ui.radio(
options={
"I like action and drama!": "New Viewer",
"I only like action shows": "Action Fan",
"I only like dramas": "Drama Fan",
},
value="I like action and drama!",
label="Which genre do you prefer?",
)
return (viewer_type,)
@app.cell(hide_code=True)
def _(viewer_type):
viewer_type
return
@app.cell
def _():
action_shows = {"Stranger Things", "The Witcher", "Money Heist"}
drama_shows = {"The Crown", "Money Heist", "Bridgerton"}
return action_shows, drama_shows
@app.cell
def _(action_shows, drama_shows):
recommendations = {
"New Viewer": action_shows | drama_shows, # Union for new viewers
"Action Fan": action_shows - drama_shows, # Unique action shows
"Drama Fan": drama_shows - action_shows, # Unique drama shows
}
return (recommendations,)
@app.cell(hide_code=True)
def _(mo, recommendations, viewer_type):
result = recommendations[viewer_type.value]
explanation = {
"New Viewer": "You get everything to explore!",
"Action Fan": "Pure action, no drama!",
"Drama Fan": "Drama-focused selections!",
}
mo.md(f"""
**๐ฌ Recommended shows.** Based on your preference for **{viewer_type.value}**,
we recommend:
{", ".join(result)}
**Why these shows?**
{explanation[viewer_type.value]}
""")
return explanation, result
@app.cell(hide_code=True)
def _(mo):
mo.md("""
### Exercise
Given these sets:
- A = {๐ฎ, ๐ฑ, ๐ป}
- B = {๐ฑ, ๐ป, ๐จ๏ธ}
- C = {๐ป, ๐จ๏ธ, โจ๏ธ}
Can you:
1. Find all elements that are in A or B
2. Find elements common to all three sets
3. Find elements in A that aren't in C
<details>
<summary>Check your answers!</summary>
1. A โช B = {๐ฎ, ๐ฑ, ๐ป, ๐จ๏ธ}<br>
2. A โฉ B โฉ C = {๐ป}<br>
3. A - C = {๐ฎ, ๐ฑ}
</details>
""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## ๐งฎ Set properties
Here are some important properties of the set operations:
1. **Commutative**: $A \cup B = B \cup A$
2. **Associative**: $(A \cup B) \cup C = A \cup (B \cup C)$
3. **Distributive**: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Set builder notation
To compactly describe the elements in a set, we can use **set builder notation**, which specifies conditions that must be true for elements to be in the set.
For example, here is how to specify the set of positive numbers less than 10:
\[
\{x \mid 0 < x < 10 \}
\]
The predicate to the right of the vertical bar $\mid$ specifies conditions that must be true for an element to be in the set; the expression to the left of $\mid$ specifies the value being included.
In Python, set builder notation is called a "set comprehension."
"""
)
return
@app.cell
def _():
def predicate(x):
return x > 0 and x < 10
return (predicate,)
@app.cell
def _(predicate):
set(x for x in range(100) if predicate(x))
return
@app.cell(hide_code=True)
def _(mo):
mo.md("""**Try it!** Try modifying the `predicate` function above and see how the set changes.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md("""
## Summary
You've learned:
- Basic set operations
- Set properties
- Real-world applications
In the next lesson, we'll define probability from the ground up, using sets.
Remember: In probability, every event is a set, and every set can be an event!
""")
return
@app.cell
def _():
import marimo as mo
return (mo,)
if __name__ == "__main__":
app.run()
|