File size: 6,433 Bytes
48f7de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "marimo",
# ]
# ///

import marimo

__generated_with = "0.11.0"
app = marimo.App()


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        # Sets

        Probability is the study of "events", assigning numerical values to how likely
        events are to occur. For example, probability lets us quantify how likely it is for it to rain or shine on a given day.


        Typically we reason about _sets_ of events. In mathematics,
        a set is a collection of elements, with no element included more than once.
        Elements can be any kind of object.

        For example:

        - โ˜€๏ธ Weather events: $\{\text{Rain}, \text{Overcast}, \text{Clear}\}$
        - ๐ŸŽฒ Die rolls: $\{1, 2, 3, 4, 5, 6\}$
        - ๐Ÿช™ Pairs of coin flips = $\{ \text{(Heads, Heads)}, \text{(Heads, Tails)}, \text{(Tails, Tails)} \text{(Tails, Heads)}\}$

        Sets are the building blocks of probability, and will arise frequently in our study.
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""## Set operations""")
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""In Python, sets are made with the `set` function:""")
    return


@app.cell
def _():
    A = set([2, 3, 5, 7])
    A
    return (A,)


@app.cell
def _():
    B = set([0, 1, 2, 3, 5, 8])
    B
    return (B,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        Below we explain common operations on sets.

        _**Try it!** Try modifying the definitions of `A` and `B` above, and see how the results change below._

        The **union** $A \cup B$ of sets $A$ and $B$ is the set of elements in $A$, $B$, or both.
        """
    )
    return


@app.cell
def _(A, B):
    A | B
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""The **intersection** $A \cap B$ is the set of elements in both $A$ and $B$""")
    return


@app.cell
def _(A, B):
    A & B
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""The **difference** $A \setminus B$ is the set of elements in $A$ that are not in $B$.""")
    return


@app.cell
def _(A, B):
    A - B
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        """
        ### ๐ŸŽฌ An interactive example

        Here's a simple example that classifies TV shows into sets by genre, and uses these sets to recommend shows to a user based on their preferences.
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    viewer_type = mo.ui.radio(
        options={
            "I like action and drama!": "New Viewer",
            "I only like action shows": "Action Fan",
            "I only like dramas": "Drama Fan",
        },
        value="I like action and drama!",
        label="Which genre do you prefer?",
    )
    return (viewer_type,)


@app.cell(hide_code=True)
def _(viewer_type):
    viewer_type
    return


@app.cell
def _():
    action_shows = {"Stranger Things", "The Witcher", "Money Heist"}
    drama_shows = {"The Crown", "Money Heist", "Bridgerton"}
    return action_shows, drama_shows


@app.cell
def _(action_shows, drama_shows):
    recommendations = {
        "New Viewer": action_shows | drama_shows,  # Union for new viewers
        "Action Fan": action_shows - drama_shows,  # Unique action shows
        "Drama Fan": drama_shows - action_shows,  # Unique drama shows
    }
    return (recommendations,)


@app.cell(hide_code=True)
def _(mo, recommendations, viewer_type):
    result = recommendations[viewer_type.value]

    explanation = {
        "New Viewer": "You get everything to explore!",
        "Action Fan": "Pure action, no drama!",
        "Drama Fan": "Drama-focused selections!",
    }

    mo.md(f"""
    **๐ŸŽฌ Recommended shows.** Based on your preference for **{viewer_type.value}**,
    we recommend:

    {", ".join(result)}

    **Why these shows?** 
    {explanation[viewer_type.value]}
    """)
    return explanation, result


@app.cell(hide_code=True)
def _(mo):
    mo.md("""
    ### Exercise

    Given these sets:

    - A = {๐ŸŽฎ, ๐Ÿ“ฑ, ๐Ÿ’ป}

    - B = {๐Ÿ“ฑ, ๐Ÿ’ป, ๐Ÿ–จ๏ธ}

    - C = {๐Ÿ’ป, ๐Ÿ–จ๏ธ, โŒจ๏ธ}

    Can you:

    1. Find all elements that are in A or B

    2. Find elements common to all three sets

    3. Find elements in A that aren't in C

    <details>

    <summary>Check your answers!</summary>

    1. A โˆช B = {๐ŸŽฎ, ๐Ÿ“ฑ, ๐Ÿ’ป, ๐Ÿ–จ๏ธ}<br>
    2. A โˆฉ B โˆฉ C = {๐Ÿ’ป}<br>
    3. A - C = {๐ŸŽฎ, ๐Ÿ“ฑ}

    </details>
    """)
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## ๐Ÿงฎ Set properties

        Here are some important properties of the set operations:

        1. **Commutative**: $A \cup B = B \cup A$
        2. **Associative**: $(A \cup B) \cup C = A \cup (B \cup C)$
        3. **Distributive**: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Set builder notation

        To compactly describe the elements in a set, we can use **set builder notation**, which specifies conditions that must be true for elements to be in the set.

        For example, here is how to specify the set of positive numbers less than 10:

        \[
        \{x \mid 0 < x < 10 \}
        \]

        The predicate to the right of the vertical bar $\mid$ specifies conditions that must be true for an element to be in the set; the expression to the left of $\mid$ specifies the value being included.

        In Python, set builder notation is called a "set comprehension."
        """
    )
    return


@app.cell
def _():
    def predicate(x):
        return x > 0 and x < 10
    return (predicate,)


@app.cell
def _(predicate):
    set(x for x in range(100) if predicate(x))
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md("""**Try it!** Try modifying the `predicate` function above and see how the set changes.""")
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md("""
    ## Summary

    You've learned:

    - Basic set operations
    - Set properties
    - Real-world applications

    In the next lesson, we'll define probability from the ground up, using sets.

    Remember: In probability, every event is a set, and every set can be an event!
    """)
    return


@app.cell
def _():
    import marimo as mo
    return (mo,)


if __name__ == "__main__":
    app.run()