Spaces:
Running
Running
File size: 9,559 Bytes
939b7c9 6914a99 939b7c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "matplotlib",
# "matplotlib-venn"
# ]
# ///
import marimo
__generated_with = "0.11.4"
app = marimo.App(width="medium")
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def _():
import matplotlib.pyplot as plt
from matplotlib_venn import venn2
return plt, venn2
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Probability of And
_This notebook is a computational companion to the book ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/prob_and/), by Stanford professor Chris Piech._
When calculating the probability of both events occurring together, we need to consider whether the events are independent or dependent.
Let's explore how to calculate $P(E \cap F)$, i.e. $P(E \text{ and } F)$, in different scenarios.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## And with Independent Events
Two events $E$ and $F$ are **independent** if knowing one event occurred doesn't affect the probability of the other.
For independent events:
$P(E \text{ and } F) = P(E) \cdot P(F)$
For example:
- Rolling a 6 on one die and getting heads on a coin flip
- Drawing a heart from a deck, replacing it, and drawing another heart
- Getting a computer error on Monday vs. Tuesday
Here's a Python function to calculate probability for independent events:
"""
)
return
@app.cell
def _():
def calc_independent_prob(p_e, p_f):
return p_e * p_f
# Example 1: Rolling a die and flipping a coin
p_six = 1/6 # P(rolling a 6)
p_heads = 1/2 # P(getting heads)
p_both = calc_independent_prob(p_six, p_heads)
print(f"Example 1: P(rolling 6 AND getting heads) = {p_six:.3f} × {p_heads:.3f} = {p_both:.3f}")
return calc_independent_prob, p_both, p_heads, p_six
@app.cell
def _(calc_independent_prob):
# Example 2: Two independent system components failing
p_cpu_fail = 0.05 # P(CPU failure)
p_disk_fail = 0.03 # P(disk failure)
p_both_fail = calc_independent_prob(p_cpu_fail, p_disk_fail)
print(f"Example 2: P(both CPU and disk failing) = {p_cpu_fail:.3f} × {p_disk_fail:.3f} = {p_both_fail:.3f}")
return p_both_fail, p_cpu_fail, p_disk_fail
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## And with Dependent Events
For dependent events, we use the **chain rule**:
$P(E \text{ and } F) = P(E) \cdot P(F|E)$
where $P(F|E)$ is the probability of $F$ occurring given that $E$ has occurred.
For example:
- Drawing two hearts without replacement
- Getting two consecutive heads in poker
- System failures in connected components
Let's implement this calculation:
"""
)
return
@app.cell
def _():
def calc_dependent_prob(p_e, p_f_given_e):
return p_e * p_f_given_e
# Example 1: Drawing two hearts without replacement
p_first_heart = 13/52 # P(first heart)
p_second_heart = 12/51 # P(second heart | first heart)
p_both_hearts = calc_dependent_prob(p_first_heart, p_second_heart)
print(f"Example 1: P(two hearts) = {p_first_heart:.3f} × {p_second_heart:.3f} = {p_both_hearts:.3f}")
return calc_dependent_prob, p_both_hearts, p_first_heart, p_second_heart
@app.cell
def _(calc_dependent_prob):
# Example 2: Drawing two aces without replacement
p_first_ace = 4/52 # P(first ace)
p_second_ace = 3/51 # P(second ace | first ace)
p_both_aces = calc_dependent_prob(p_first_ace, p_second_ace)
print(f"Example 2: P(two aces) = {p_first_ace:.3f} × {p_second_ace:.3f} = {p_both_aces:.3f}")
return p_both_aces, p_first_ace, p_second_ace
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Multiple Events
For multiple independent events:
$P(E_1 \text{ and } E_2 \text{ and } \cdots \text{ and } E_n) = \prod_{i=1}^n P(E_i)$
For dependent events:
$P(E_1 \text{ and } E_2 \text{ and } \cdots \text{ and } E_n) = P(E_1) \cdot P(E_2|E_1) \cdot P(E_3|E_1,E_2) \cdots P(E_n|E_1,\ldots,E_{n-1})$
Let's visualize these probabilities:
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""### Interactive example""")
return
@app.cell
def _(event_type):
event_type
return
@app.cell(hide_code=True)
def _(mo):
event_type = mo.ui.dropdown(
options=[
"Independent AND (Die and Coin)",
"Dependent AND (Sequential Cards)",
"Multiple AND (System Components)"
],
value="Independent AND (Die and Coin)",
label="Select AND Probability Scenario"
)
return (event_type,)
@app.cell(hide_code=True)
def _(event_type, mo, plt, venn2):
# Define the events and their probabilities
events_data = {
"Independent AND (Die and Coin)": {
"sets": (0.33, 0.17, 0.08), # (die, coin, intersection)
"labels": ("Die\nP(6)=1/6", "Coin\nP(H)=1/2"),
"title": "Independent Events: Rolling a 6 AND Getting Heads",
"explanation": r"""
### Independent Events: Die Roll and Coin Flip
$P(\text{Rolling 6}) = \frac{1}{6} \approx 0.17$
$P(\text{Getting Heads}) = \frac{1}{2} = 0.5$
$P(\text{6 and Heads}) = \frac{1}{6} \times \frac{1}{2} = \frac{1}{12} \approx 0.08$
These events are independent because the outcome of the die roll
doesn't affect the coin flip, and vice versa.
""",
},
"Dependent AND (Sequential Cards)": {
"sets": (
0.25,
0.24,
0.06,
), # (first heart, second heart, intersection)
"labels": ("First\nP(H₁)=13/52", "Second\nP(H₂|H₁)=12/51"),
"title": "Dependent Events: Drawing Two Hearts",
"explanation": r"""
### Dependent Events: Drawing Hearts
$P(\text{First Heart}) = \frac{13}{52} = 0.25$
$P(\text{Second Heart}|\text{First Heart}) = \frac{12}{51} \approx 0.24$
$P(\text{Both Hearts}) = \frac{13}{52} \times \frac{12}{51} \approx 0.06$
These events are dependent because drawing the first heart
changes the probability of drawing the second heart.
""",
},
"Multiple AND (System Components)": {
"sets": (0.05, 0.03, 0.0015), # (CPU fail, disk fail, intersection)
"labels": ("CPU\nP(C)=0.05", "Disk\nP(D)=0.03"),
"title": "Independent System Failures",
"explanation": r"""
### System Component Failures
$P(\text{CPU Failure}) = 0.05$
$P(\text{Disk Failure}) = 0.03$
$P(\text{Both Fail}) = 0.05 \times 0.03 = 0.0015$
Component failures are typically independent in **well-designed systems**,
meaning one component's failure doesn't affect the other's probability of failing.
""",
},
}
# Get data for selected event type
data = events_data[event_type.value]
# Create visualization
plt.figure(figsize=(10, 5))
v = venn2(subsets=data["sets"], set_labels=data["labels"])
plt.title(data["title"])
# Display explanation alongside visualization
mo.hstack([plt.gcf(), mo.md(data["explanation"])])
return data, events_data, v
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🤔 Test Your Understanding
Which of these statements about AND probability are true?
<details>
<summary>1. The probability of getting two sixes in a row with a fair die is 1/36</summary>
✅ True! Since die rolls are independent events:
P(two sixes) = P(first six) × P(second six) = 1/6 × 1/6 = 1/36
</details>
<details>
<summary>2. When drawing cards without replacement, P(two kings) = 4/52 × 4/52</summary>
❌ False! This is a dependent event. The correct calculation is:
P(two kings) = P(first king) × P(second king | first king) = 4/52 × 3/51
</details>
<details>
<summary>3. If P(A) = 0.3 and P(B) = 0.4, then P(A and B) must be 0.12</summary>
❌ False! P(A and B) = 0.12 only if A and B are independent events.
If they're dependent, we need P(B|A) to calculate P(A and B).
</details>
<details>
<summary>4. The probability of rolling a six AND getting tails is (1/6 × 1/2)</summary>
✅ True! These are independent events, so we multiply their individual probabilities:
P(six and tails) = P(six) × P(tails) = 1/6 × 1/2 = 1/12
</details>
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
## Summary
You've learned:
- How to identify independent vs dependent events
- The multiplication rule for independent events
- The chain rule for dependent events
- How to extend these concepts to multiple events
In the next lesson, we'll explore **law of total probability** in more detail, building on our understanding of various topics.
"""
)
return
if __name__ == "__main__":
app.run()
|