Haleshot commited on
Commit
939b7c9
·
unverified ·
1 Parent(s): cdca786

Add `probability of or` notebook

Browse files
Files changed (1) hide show
  1. probability/06_probability_of_and.py +316 -0
probability/06_probability_of_and.py ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.10"
3
+ # dependencies = [
4
+ # "marimo",
5
+ # "matplotlib",
6
+ # "matplotlib-venn"
7
+ # ]
8
+ # ///
9
+
10
+ import marimo
11
+
12
+ __generated_with = "0.11.4"
13
+ app = marimo.App(width="medium")
14
+
15
+
16
+ @app.cell
17
+ def _():
18
+ import marimo as mo
19
+ return (mo,)
20
+
21
+
22
+ @app.cell(hide_code=True)
23
+ def _(mo):
24
+ mo.md(
25
+ r"""
26
+ # Probability of And
27
+ _This notebook is a computational companion to the book ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/prob_and/), by Stanford professor Chris Piech._
28
+
29
+ When calculating the probability of both events occurring together, we need to consider whether the events are independent or dependent.
30
+ Let's explore how to calculate $P(E \cap F)$, i.e. $P(E \text{ and } F)$, in different scenarios.
31
+ """
32
+ )
33
+ return
34
+
35
+
36
+ @app.cell(hide_code=True)
37
+ def _(mo):
38
+ mo.md(
39
+ r"""
40
+ ## And with Independent Events
41
+
42
+ Two events $E$ and $F$ are **independent** if knowing one event occurred doesn't affect the probability of the other.
43
+ For independent events:
44
+
45
+ $P(E \text{ and } F) = P(E) \cdot P(F)$
46
+
47
+ For example:
48
+
49
+ - Rolling a 6 on one die and getting heads on a coin flip
50
+ - Drawing a heart from a deck, replacing it, and drawing another heart
51
+ - Getting a computer error on Monday vs. Tuesday
52
+
53
+ Here's a Python function to calculate probability for independent events:
54
+ """
55
+ )
56
+ return
57
+
58
+
59
+ @app.cell
60
+ def _():
61
+ def calc_independent_prob(p_e, p_f):
62
+ return p_e * p_f
63
+
64
+ # Example 1: Rolling a die and flipping a coin
65
+ p_six = 1/6 # P(rolling a 6)
66
+ p_heads = 1/2 # P(getting heads)
67
+ p_both = calc_independent_prob(p_six, p_heads)
68
+ print(f"Example 1: P(rolling 6 AND getting heads) = {p_six:.3f} × {p_heads:.3f} = {p_both:.3f}")
69
+ return calc_independent_prob, p_both, p_heads, p_six
70
+
71
+
72
+ @app.cell
73
+ def _(calc_independent_prob):
74
+ # Example 2: Two independent system components failing
75
+ p_cpu_fail = 0.05 # P(CPU failure)
76
+ p_disk_fail = 0.03 # P(disk failure)
77
+ p_both_fail = calc_independent_prob(p_cpu_fail, p_disk_fail)
78
+ print(f"Example 2: P(both CPU and disk failing) = {p_cpu_fail:.3f} × {p_disk_fail:.3f} = {p_both_fail:.3f}")
79
+ return p_both_fail, p_cpu_fail, p_disk_fail
80
+
81
+
82
+ @app.cell(hide_code=True)
83
+ def _(mo):
84
+ mo.md(
85
+ r"""
86
+ ## And with Dependent Events
87
+
88
+ For dependent events, we use the **chain rule**:
89
+
90
+ $P(E \text{ and } F) = P(E) \cdot P(F|E)$
91
+
92
+ where $P(F|E)$ is the probability of $F$ occurring given that $E$ has occurred.
93
+
94
+ For example:
95
+
96
+ - Drawing two hearts without replacement
97
+ - Getting two consecutive heads in poker
98
+ - System failures in connected components
99
+
100
+ Let's implement this calculation:
101
+ """
102
+ )
103
+ return
104
+
105
+
106
+ @app.cell
107
+ def _():
108
+ def calc_dependent_prob(p_e, p_f_given_e):
109
+ return p_e * p_f_given_e
110
+
111
+ # Example 1: Drawing two hearts without replacement
112
+ p_first_heart = 13/52 # P(first heart)
113
+ p_second_heart = 12/51 # P(second heart | first heart)
114
+ p_both_hearts = calc_dependent_prob(p_first_heart, p_second_heart)
115
+ print(f"Example 1: P(two hearts) = {p_first_heart:.3f} × {p_second_heart:.3f} = {p_both_hearts:.3f}")
116
+ return calc_dependent_prob, p_both_hearts, p_first_heart, p_second_heart
117
+
118
+
119
+ @app.cell
120
+ def _(calc_dependent_prob):
121
+ # Example 2: Drawing two aces without replacement
122
+ p_first_ace = 4/52 # P(first ace)
123
+ p_second_ace = 3/51 # P(second ace | first ace)
124
+ p_both_aces = calc_dependent_prob(p_first_ace, p_second_ace)
125
+ print(f"Example 2: P(two aces) = {p_first_ace:.3f} × {p_second_ace:.3f} = {p_both_aces:.3f}")
126
+ return p_both_aces, p_first_ace, p_second_ace
127
+
128
+
129
+ @app.cell(hide_code=True)
130
+ def _(mo):
131
+ mo.md(
132
+ r"""
133
+ ## Multiple Events
134
+
135
+ For multiple independent events:
136
+
137
+ $P(E_1 \text{ and } E_2 \text{ and } \cdots \text{ and } E_n) = \prod_{i=1}^n P(E_i)$
138
+
139
+ For dependent events:
140
+
141
+ $P(E_1 \text{ and } E_2 \text{ and } \cdots \text{ and } E_n) = P(E_1) \cdot P(E_2|E_1) \cdot P(E_3|E_1,E_2) \cdots P(E_n|E_1,\ldots,E_{n-1})$
142
+
143
+ Let's visualize these probabilities:
144
+ """
145
+ )
146
+ return
147
+
148
+
149
+ @app.cell(hide_code=True)
150
+ def _(mo):
151
+ mo.md(r"""### Interactive example""")
152
+ return
153
+
154
+
155
+ @app.cell
156
+ def _(event_type):
157
+ event_type
158
+ return
159
+
160
+
161
+ @app.cell(hide_code=True)
162
+ def _(mo):
163
+ event_type = mo.ui.dropdown(
164
+ options=[
165
+ "Independent AND (Die and Coin)",
166
+ "Dependent AND (Sequential Cards)",
167
+ "Multiple AND (System Components)"
168
+ ],
169
+ value="Independent AND (Die and Coin)",
170
+ label="Select AND Probability Scenario"
171
+ )
172
+ return (event_type,)
173
+
174
+
175
+ @app.cell(hide_code=True)
176
+ def _(event_type, mo, plt, venn2):
177
+ # Define the events and their probabilities
178
+ events_data = {
179
+ "Independent AND (Die and Coin)": {
180
+ "sets": (0.33, 0.17, 0.08), # (die, coin, intersection)
181
+ "labels": ("Die\nP(6)=1/6", "Coin\nP(H)=1/2"),
182
+ "title": "Independent Events: Rolling a 6 AND Getting Heads",
183
+ "explanation": r"""
184
+ ### Independent Events: Die Roll and Coin Flip
185
+
186
+ $P(\text{Rolling 6}) = \frac{1}{6} \approx 0.17$
187
+
188
+ $P(\text{Getting Heads}) = \frac{1}{2} = 0.5$
189
+
190
+ $P(\text{6 and Heads}) = \frac{1}{6} \times \frac{1}{2} = \frac{1}{12} \approx 0.08$
191
+
192
+ These events are independent because the outcome of the die roll
193
+ doesn't affect the coin flip, and vice versa.
194
+ """,
195
+ },
196
+ "Dependent AND (Sequential Cards)": {
197
+ "sets": (
198
+ 0.25,
199
+ 0.24,
200
+ 0.06,
201
+ ), # (first heart, second heart, intersection)
202
+ "labels": ("First\nP(H₁)=13/52", "Second\nP(H₂|H₁)=12/51"),
203
+ "title": "Dependent Events: Drawing Two Hearts",
204
+ "explanation": r"""
205
+ ### Dependent Events: Drawing Hearts
206
+
207
+ $P(\text{First Heart}) = \frac{13}{52} = 0.25$
208
+
209
+ $P(\text{Second Heart}|\text{First Heart}) = \frac{12}{51} \approx 0.24$
210
+
211
+ $P(\text{Both Hearts}) = \frac{13}{52} \times \frac{12}{51} \approx 0.06$
212
+
213
+ These events are dependent because drawing the first heart
214
+ changes the probability of drawing the second heart.
215
+ """,
216
+ },
217
+ "Multiple AND (System Components)": {
218
+ "sets": (0.05, 0.03, 0.0015), # (CPU fail, disk fail, intersection)
219
+ "labels": ("CPU\nP(C)=0.05", "Disk\nP(D)=0.03"),
220
+ "title": "Independent System Failures",
221
+ "explanation": r"""
222
+ ### System Component Failures
223
+
224
+ $P(\text{CPU Failure}) = 0.05$
225
+
226
+ $P(\text{Disk Failure}) = 0.03$
227
+
228
+ $P(\text{Both Fail}) = 0.05 \times 0.03 = 0.0015$
229
+
230
+ Component failures are typically independent in **well-designed systems**,
231
+ meaning one component's failure doesn't affect the other's probability of failing.
232
+ """,
233
+ },
234
+ }
235
+
236
+ # Get data for selected event type
237
+ data = events_data[event_type.value]
238
+
239
+ # Create visualization
240
+ plt.figure(figsize=(10, 5))
241
+ v = venn2(subsets=data["sets"], set_labels=data["labels"])
242
+ plt.title(data["title"])
243
+
244
+ # Display explanation alongside visualization
245
+ mo.hstack([plt.gcf(), mo.md(data["explanation"])])
246
+ return data, events_data, v
247
+
248
+
249
+ @app.cell(hide_code=True)
250
+ def _(mo):
251
+ mo.md(
252
+ r"""
253
+ ## 🤔 Test Your Understanding
254
+
255
+ Which of these statements about AND probability are true?
256
+
257
+ <details>
258
+ <summary>1. The probability of getting two sixes in a row with a fair die is 1/36</summary>
259
+
260
+ ✅ True! Since die rolls are independent events:
261
+ P(two sixes) = P(first six) × P(second six) = 1/6 × 1/6 = 1/36
262
+ </details>
263
+
264
+ <details>
265
+ <summary>2. When drawing cards without replacement, P(two kings) = 4/52 × 4/52</summary>
266
+
267
+ ❌ False! This is a dependent event. The correct calculation is:
268
+ P(two kings) = P(first king) × P(second king | first king) = 4/52 × 3/51
269
+ </details>
270
+
271
+ <details>
272
+ <summary>3. If P(A) = 0.3 and P(B) = 0.4, then P(A and B) must be 0.12</summary>
273
+
274
+ ❌ False! P(A and B) = 0.12 only if A and B are independent events.
275
+ If they're dependent, we need P(B|A) to calculate P(A and B).
276
+ </details>
277
+
278
+ <details>
279
+ <summary>4. The probability of rolling a six AND getting tails is (1/6 × 1/2)</summary>
280
+
281
+ ✅ True! These are independent events, so we multiply their individual probabilities:
282
+ P(six and tails) = P(six) × P(tails) = 1/6 × 1/2 = 1/12
283
+ </details>
284
+ """
285
+ )
286
+ return
287
+
288
+
289
+ @app.cell(hide_code=True)
290
+ def _(mo):
291
+ mo.md(
292
+ """
293
+ ## Summary
294
+
295
+ You've learned:
296
+
297
+ - How to identify independent vs dependent events
298
+ - The multiplication rule for independent events
299
+ - The chain rule for dependent events
300
+ - How to extend these concepts to multiple events
301
+
302
+ In the next lesson, we'll explore **law of total probability** in more detail, building on our understanding of various topics.
303
+ """
304
+ )
305
+ return
306
+
307
+
308
+ @app.cell
309
+ def _():
310
+ import matplotlib.pyplot as plt
311
+ from matplotlib_venn import venn2
312
+ return plt, venn2
313
+
314
+
315
+ if __name__ == "__main__":
316
+ app.run()