Spaces:
Running
Running
File size: 15,160 Bytes
13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac 87c93b4 13db4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "matplotlib==3.10.0",
# "numpy==2.2.3",
# "scipy==1.15.2",
# ]
# ///
import marimo
__generated_with = "0.11.10"
app = marimo.App(width="medium", app_title="Random Variables")
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def _():
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
return np, plt, stats
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Random Variables
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/rvs/), by Stanford professor Chris Piech._
Random variables are functions that map outcomes from a probability space to numbers. This mathematical abstraction allows us to:
- Work with numerical outcomes in probability
- Calculate expected values and variances
- Model real-world phenomena quantitatively
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Types of Random Variables
### Discrete Random Variables
- Take on countable values (finite or infinite)
- Described by a probability mass function (PMF)
- Example: Number of heads in 3 coin flips
### Continuous Random Variables
- Take on uncountable values in an interval
- Described by a probability density function (PDF)
- Example: Height of a randomly selected person
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Properties of Random Variables
Each random variable has several key properties:
| Property | Description | Example |
|----------|-------------|---------|
| Meaning | Semantic description | Number of successes in n trials |
| Symbol | Notation used | $X$, $Y$, $Z$ |
| Support/Range | Possible values | $\{0,1,2,...,n\}$ for binomial |
| Distribution | PMF or PDF | $p_X(x)$ or $f_X(x)$ |
| Expectation | Weighted average | $E[X]$ |
| Variance | Measure of spread | $\text{Var}(X)$ |
| Standard Deviation | Square root of variance | $\sigma_X$ |
| Mode | Most likely value | argmax$_x$ $p_X(x)$ |
Additional properties include:
- [Entropy](https://en.wikipedia.org/wiki/Entropy_(information_theory)) (measure of uncertainty)
- [Median](https://en.wikipedia.org/wiki/Median) (middle value)
- [Skewness](https://en.wikipedia.org/wiki/Skewness) (asymmetry measure)
- [Kurtosis](https://en.wikipedia.org/wiki/Kurtosis) (tail heaviness measure)
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Probability Mass Functions (PMF)
For discrete random variables, the PMF $p_X(x)$ gives the probability that $X$ equals $x$:
$p_X(x) = P(X = x)$
Properties of a PMF:
1. $p_X(x) \geq 0$ for all $x$
2. $\sum_x p_X(x) = 1$
Let's implement a PMF for rolling a fair die:
"""
)
return
@app.cell
def _(np, plt):
def die_pmf(x):
if x in [1, 2, 3, 4, 5, 6]:
return 1 / 6
return 0
# Plot the PMF
_x = np.arange(1, 7)
probabilities = [die_pmf(i) for i in _x]
plt.figure(figsize=(8, 2))
plt.bar(_x, probabilities)
plt.title("PMF of Rolling a Fair Die")
plt.xlabel("Outcome")
plt.ylabel("Probability")
plt.grid(True, alpha=0.3)
plt.gca()
return die_pmf, probabilities
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Probability Density Functions (PDF)
For continuous random variables, we use a PDF $f_X(x)$. The probability of $X$ falling in an interval $[a,b]$ is:
$P(a \leq X \leq b) = \int_a^b f_X(x)dx$
Properties of a PDF:
1. $f_X(x) \geq 0$ for all $x$
2. $\int_{-\infty}^{\infty} f_X(x)dx = 1$
Let's look at the normal distribution, a common continuous random variable:
"""
)
return
@app.cell
def _(np, plt, stats):
# Generate points for plotting
_x = np.linspace(-4, 4, 100)
_pdf = stats.norm.pdf(_x, loc=0, scale=1)
plt.figure(figsize=(8, 4))
plt.plot(_x, _pdf, "b-", label="PDF")
plt.fill_between(_x, _pdf, where=(_x >= -1) & (_x <= 1), alpha=0.3)
plt.title("Standard Normal Distribution")
plt.xlabel("x")
plt.ylabel("Density")
plt.grid(True, alpha=0.3)
plt.legend()
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Expected Value
The expected value $E[X]$ is the long-run average of a random variable.
For discrete random variables:
$E[X] = \sum_x x \cdot p_X(x)$
For continuous random variables:
$E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x)dx$
Properties:
1. $E[aX + b] = aE[X] + b$
2. $E[X + Y] = E[X] + E[Y]$
"""
)
return
@app.cell
def _(np):
def expected_value_discrete(x_values, probabilities):
return sum(x * p for x, p in zip(x_values, probabilities))
# Example: Expected value of a fair die roll
die_values = np.arange(1, 7)
die_probs = np.ones(6) / 6
E_X = expected_value_discrete(die_values, die_probs)
return E_X, die_probs, die_values, expected_value_discrete
@app.cell
def _(E_X):
E_X
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Variance
The variance $\text{Var}(X)$ measures the spread of a random variable around its mean:
$\text{Var}(X) = E[(X - E[X])^2]$
This can be computed as:
$\text{Var}(X) = E[X^2] - (E[X])^2$
Properties:
1. $\text{Var}(aX) = a^2Var(X)$
2. $\text{Var}(X + b) = Var(X)$
"""
)
return
@app.cell
def _(E_X, die_probs, die_values, np):
def variance_discrete(x_values, probabilities, expected_value):
squared_diff = [(x - expected_value) ** 2 for x in x_values]
return sum(d * p for d, p in zip(squared_diff, probabilities))
# Example: Variance of a fair die roll
var_X = variance_discrete(die_values, die_probs, E_X)
std_X = np.sqrt(var_X)
return std_X, var_X, variance_discrete
@app.cell(hide_code=True)
def _(mo, std_X, var_X):
mo.md(
f"""
### Examples of Variance Calculation
For our fair die example:
- Variance: {var_X:.2f}
- Standard Deviation: {std_X:.2f}
This means that on average, a roll deviates from the mean (3.5) by about {std_X:.2f} units.
Let's look another example for a fair coin:
"""
)
return
@app.cell
def _(variance_discrete):
# Fair coin (X = 0 or 1)
coin_values = [0, 1]
coin_probs = [0.5, 0.5]
coin_mean = sum(x * p for x, p in zip(coin_values, coin_probs))
coin_var = variance_discrete(coin_values, coin_probs, coin_mean)
return coin_mean, coin_probs, coin_values, coin_var
@app.cell
def _(np, stats, variance_discrete):
# Standard normal (discretized for example)
normal_values = np.linspace(-3, 3, 100)
normal_probs = stats.norm.pdf(normal_values)
normal_probs = normal_probs / sum(normal_probs) # normalize
normal_mean = 0
normal_var = variance_discrete(normal_values, normal_probs, normal_mean)
return normal_mean, normal_probs, normal_values, normal_var
@app.cell
def _(np, variance_discrete):
# Uniform on [0,1] (discretized for example)
uniform_values = np.linspace(0, 1, 100)
uniform_probs = np.ones_like(uniform_values) / len(uniform_values)
uniform_mean = 0.5
uniform_var = variance_discrete(uniform_values, uniform_probs, uniform_mean)
return uniform_mean, uniform_probs, uniform_values, uniform_var
@app.cell(hide_code=True)
def _(coin_var, mo, normal_var, uniform_var):
mo.md(
rf"""
Let's look at some calculated variances:
- Fair coin (X = 0 or 1): $\text{{Var}}(X) = {coin_var:.4f}$
- Standard normal distribution (discretized): $\text{{Var(X)}} ≈ {normal_var:.4f}$
- Uniform distribution on $[0,1]$ (discretized): $\text{{Var(X)}} ≈ {uniform_var:.4f}$
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Common Distributions
1. Bernoulli Distribution
- Models a single success/failure experiment
- $P(X = 1) = p$, $P(X = 0) = 1-p$
- $E[X] = p$, $\text{Var}(X) = p(1-p)$
2. Binomial Distribution
- Models number of successes in $n$ independent trials
- $P(X = k) = \binom{n}{k}p^k(1-p)^{n-k}$
- $E[X] = np$, $\text{Var}(X) = np(1-p)$
3. Normal Distribution
- Bell-shaped curve defined by mean $\mu$ and variance $\sigma^2$
- PDF: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- $E[X] = \mu$, $\text{Var}(X) = \sigma^2$
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Example: Comparing Discrete and Continuous Distributions
This example shows the relationship between a Binomial distribution (discrete) and its Normal approximation (continuous).
The parameters control both distributions:
- **Number of Trials**: Controls the range of possible values and the shape's width
- **Success Probability**: Affects the distribution's center and skewness
"""
)
return
@app.cell
def _(mo, n_trials, p_success):
mo.hstack([n_trials, p_success], justify="space-around")
return
@app.cell(hide_code=True)
def _(mo):
# Distribution parameters
n_trials = mo.ui.slider(1, 20, value=10, label="Number of Trials")
p_success = mo.ui.slider(0, 1, value=0.5, step=0.05, label="Success Probability")
return n_trials, p_success
@app.cell(hide_code=True)
def _(n_trials, np, p_success, plt, stats):
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 3))
# Discrete: Binomial PMF
k = np.arange(0, n_trials.value + 1)
pmf = stats.binom.pmf(k, n_trials.value, p_success.value)
ax1.bar(k, pmf, alpha=0.8, color="#1f77b4", label="PMF")
ax1.set_title(f"Binomial PMF (n={n_trials.value}, p={p_success.value})")
ax1.set_xlabel("Number of Successes")
ax1.set_ylabel("Probability")
ax1.grid(True, alpha=0.3)
# Continuous: Normal PDF approx.
mu = n_trials.value * p_success.value
sigma = np.sqrt(n_trials.value * p_success.value * (1 - p_success.value))
x = np.linspace(max(0, mu - 4 * sigma), min(n_trials.value, mu + 4 * sigma), 100)
pdf = stats.norm.pdf(x, mu, sigma)
ax2.plot(x, pdf, "r-", linewidth=2, label="PDF")
ax2.fill_between(x, pdf, alpha=0.3, color="red")
ax2.set_title(f"Normal PDF (μ={mu:.1f}, σ={sigma:.1f})")
ax2.set_xlabel("Continuous Approximation")
ax2.set_ylabel("Density")
ax2.grid(True, alpha=0.3)
# Set consistent x-axis limits for better comparison
ax1.set_xlim(-0.5, n_trials.value + 0.5)
ax2.set_xlim(-0.5, n_trials.value + 0.5)
plt.tight_layout()
plt.gca()
return ax1, ax2, fig, k, mu, pdf, pmf, sigma, x
@app.cell(hide_code=True)
def _(mo, n_trials, np, p_success):
mo.md(f"""
**Current Distribution Properties:**
- Mean (μ) = {n_trials.value * p_success.value:.2f}
- Standard Deviation (σ) = {np.sqrt(n_trials.value * p_success.value * (1 - p_success.value)):.2f}
Notice how the Normal distribution (right) approximates the Binomial distribution (left) better when:
1. The number of trials is larger
2. The success probability is closer to 0.5
""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Practice Problems
### Problem 1: Discrete Random Variable
Let $X$ be the sum when rolling two fair dice. Find:
1. The support of $X$
2. The PMF $p_X(x)$
3. $E[X]$ and $\text{Var}(X)$
<details>
<summary>Solution</summary>
Let's solve this step by step:
```python
def two_dice_pmf(x):
outcomes = [(i,j) for i in range(1,7) for j in range(1,7)]
favorable = [pair for pair in outcomes if sum(pair) == x]
return len(favorable)/36
# Support: {2,3,...,12}
# E[X] = 7
# Var(X) = 5.83
```
</details>
### Problem 2: Continuous Random Variable
For a uniform random variable on $[0,1]$, verify that:
1. The PDF integrates to 1
2. $E[X] = 1/2$
3. $\text{Var}(X) = 1/12$
Try solving this yourself first, then check the solution below.
"""
)
return
@app.cell
def _():
# DIY
return
@app.cell(hide_code=True)
def _(mktext, mo):
mo.accordion({"Solution": mktext}, lazy=True)
return
@app.cell(hide_code=True)
def _(mo):
mktext = mo.md(
r"""
Let's solve each part:
1. **PDF integrates to 1**:
$\int_0^1 1 \, dx = [x]_0^1 = 1 - 0 = 1$
2. **Expected Value**:
$E[X] = \int_0^1 x \cdot 1 \, dx = [\frac{x^2}{2}]_0^1 = \frac{1}{2} - 0 = \frac{1}{2}$
3. **Variance**:
$\text{Var}(X) = E[X^2] - (E[X])^2$
First calculate $E[X^2]$:
$E[X^2] = \int_0^1 x^2 \cdot 1 \, dx = [\frac{x^3}{3}]_0^1 = \frac{1}{3}$
Then:
$\text{Var}(X) = \frac{1}{3} - (\frac{1}{2})^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$
"""
)
return (mktext,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🤔 Test Your Understanding
Pick which of these statements about random variables you think are correct:
<details>
<summary>The probability density function can be greater than 1</summary>
✅ Correct! Unlike PMFs, PDFs can exceed 1 as long as the total area equals 1.
</details>
<details>
<summary>The expected value of a random variable must equal one of its possible values</summary>
❌ Incorrect! For example, the expected value of a fair die is 3.5, which is not a possible outcome.
</details>
<details>
<summary>Adding a constant to a random variable changes its variance</summary>
❌ Incorrect! Adding a constant shifts the distribution but doesn't affect its spread.
</details>
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
## Summary
You've learned:
- The difference between discrete and continuous random variables
- How PMFs and PDFs describe probability distributions
- Methods for calculating expected values and variances
- Properties of common probability distributions
In the next lesson, we'll explore Probability Mass Functions in detail, focusing on their properties and applications.
"""
)
return
if __name__ == "__main__":
app.run()
|