File size: 13,730 Bytes
7ad7196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "marimo",
#     "matplotlib==3.10.0",
#     "numpy==2.2.3",
#     "scipy==1.15.2",
# ]
# ///

import marimo

__generated_with = "0.11.22"
app = marimo.App(width="medium", app_title="Bernoulli Distribution")


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        # Bernoulli Distribution

        _This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/bernoulli/), by Stanford professor Chris Piech._

        ## Parametric Random Variables

        There are many classic and commonly-seen random variable abstractions that show up in the world of probability. At this point, we'll learn about several of the most significant parametric discrete distributions.

        When solving problems, if you can recognize that a random variable fits one of these formats, then you can use its pre-derived Probability Mass Function (PMF), expectation, variance, and other properties. Random variables of this sort are called **parametric random variables**. If you can argue that a random variable falls under one of the studied parametric types, you simply need to provide parameters.

        > A good analogy is a `class` in programming. Creating a parametric random variable is very similar to calling a constructor with input parameters.
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Bernoulli Random Variables

        A **Bernoulli random variable** (also called a boolean or indicator random variable) is the simplest kind of parametric random variable. It can take on two values: 1 and 0.

        It takes on a 1 if an experiment with probability $p$ resulted in success and a 0 otherwise. 

        Some example uses include:

        - A coin flip (heads = 1, tails = 0)
        - A random binary digit
        - Whether a disk drive crashed
        - Whether someone likes a Netflix movie

        Here $p$ is the parameter, but different instances of Bernoulli random variables might have different values of $p$.
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Key Properties of a Bernoulli Random Variable

        If $X$ is declared to be a Bernoulli random variable with parameter $p$, denoted $X \sim \text{Bern}(p)$, it has the following properties:
        """
    )
    return


@app.cell
def _(stats):
    # Define the Bernoulli distribution function
    def Bern(p):
        return stats.bernoulli(p)
    return (Bern,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Bernoulli Distribution Properties

        $\begin{array}{lll}
        \text{Notation:} & X \sim \text{Bern}(p) \\
        \text{Description:} & \text{A boolean variable that is 1 with probability } p \\
        \text{Parameters:} & p, \text{ the probability that } X = 1 \\
        \text{Support:} & x \text{ is either 0 or 1} \\
        \text{PMF equation:} & P(X = x) = 
            \begin{cases}
                p & \text{if }x = 1\\
                1-p & \text{if }x = 0
            \end{cases} \\
        \text{PMF (smooth):} & P(X = x) = p^x(1-p)^{1-x} \\
        \text{Expectation:} & E[X] = p \\
        \text{Variance:} & \text{Var}(X) = p(1-p) \\
        \end{array}$
        """
    )
    return


@app.cell(hide_code=True)
def _(mo, p_slider):
    # Visualization of the Bernoulli PMF
    _p = p_slider.value

    # Values for PMF
    values = [0, 1]
    probabilities = [1 - _p, _p]

    # Relevant statistics
    expected_value = _p
    variance = _p * (1 - _p)

    mo.md(f"""
    ## PMF Graph for Bernoulli($p={_p:.2f}$)

    Parameter $p$: {p_slider}

    Expected value: $E[X] = {expected_value:.2f}$

    Variance: $\\text{{Var}}(X) = {variance:.2f}$
    """)
    return expected_value, probabilities, values, variance


@app.cell(hide_code=True)
def _(expected_value, p_slider, plt, probabilities, values, variance):
    # PMF
    _p = p_slider.value
    fig, ax = plt.subplots(figsize=(10, 6))

    # Bar plot for PMF
    ax.bar(values, probabilities, width=0.4, color='blue', alpha=0.7)

    ax.set_xlabel('Values that X can take on')
    ax.set_ylabel('Probability')
    ax.set_title(f'PMF of Bernoulli Distribution with p = {_p:.2f}')

    # x-axis limit
    ax.set_xticks([0, 1])
    ax.set_xlim(-0.5, 1.5)

    # y-axis w/ some padding
    ax.set_ylim(0, max(probabilities) * 1.1)

    # Add expectation as vertical line
    ax.axvline(x=expected_value, color='red', linestyle='--', 
               label=f'E[X] = {expected_value:.2f}')

    # Add variance annotation
    ax.text(0.5, max(probabilities) * 0.8, 
            f'Var(X) = {variance:.3f}', 
            horizontalalignment='center',
            bbox=dict(facecolor='white', alpha=0.7))

    ax.legend()
    plt.tight_layout()
    plt.gca()
    return ax, fig


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Proof: Expectation of a Bernoulli

        If $X$ is a Bernoulli with parameter $p$, $X \sim \text{Bern}(p)$:

        \begin{align}
        E[X] &= \sum_x x \cdot (X=x) && \text{Definition of expectation} \\
        &= 1 \cdot p + 0 \cdot (1-p) &&
        X \text{ can take on values 0 and 1} \\
        &= p && \text{Remove the 0 term}
        \end{align}

        ## Proof: Variance of a Bernoulli

        If $X$ is a Bernoulli with parameter $p$, $X \sim \text{Bern}(p)$:

        To compute variance, first compute $E[X^2]$:

        \begin{align}
        E[X^2]
        &= \sum_x x^2 \cdot (X=x) &&\text{LOTUS}\\
        &= 0^2 \cdot (1-p) + 1^2 \cdot p\\
        &= p
        \end{align}

        \begin{align}
        (X)
        &= E[X^2] - E[X]^2&& \text{Def of variance} \\
        &= p - p^2 && \text{Substitute }E[X^2]=p, E[X] = p \\
        &= p (1-p) && \text{Factor out }p
        \end{align}
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Indicator Random Variable

        > **Definition**: An indicator variable is a Bernoulli random variable which takes on the value 1 if an **underlying event occurs**, and 0 _otherwise_.

        Indicator random variables are a convenient way to convert the "true/false" outcome of an event into a number. That number may be easier to incorporate into an equation.

        A random variable $I$ is an indicator variable for an event $A$ if $I = 1$ when $A$ occurs and $I = 0$ if $A$ does not occur. Indicator random variables are Bernoulli random variables, with $p = P(A)$. $I_A$ is a common choice of name for an indicator random variable.

        Here are some properties of indicator random variables:

        - $P(I=1)=P(A)$
        - $E[I]=P(A)$
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    # Simulation of Bernoulli trials
    mo.md(r"""
    ## Simulation of Bernoulli Trials

    Let's simulate Bernoulli trials to see the law of large numbers in action. We'll flip a biased coin repeatedly and observe how the proportion of successes approaches the true probability $p$.
    """)

    # UI element for simulation parameters
    num_trials_slider = mo.ui.slider(10, 10000, value=1000, step=10, label="Number of trials")
    p_sim_slider = mo.ui.slider(0.01, 0.99, value=0.65, step=0.01, label="Success probability (p)")
    return num_trials_slider, p_sim_slider


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""## Simulation""")
    return


@app.cell(hide_code=True)
def _(mo, num_trials_slider, p_sim_slider):
    mo.hstack([num_trials_slider, p_sim_slider], justify='space-around')
    return


@app.cell(hide_code=True)
def _(np, num_trials_slider, p_sim_slider, plt):
    # Bernoulli trials
    _num_trials = num_trials_slider.value
    p = p_sim_slider.value

    # Random Bernoulli trials
    trials = np.random.binomial(1, p, size=_num_trials)

    # Cumulative proportion of successes
    cumulative_mean = np.cumsum(trials) / np.arange(1, _num_trials + 1)

    # Results
    plt.figure(figsize=(10, 6))
    plt.plot(range(1, _num_trials + 1), cumulative_mean, label='Proportion of successes')
    plt.axhline(y=p, color='r', linestyle='--', label=f'True probability (p={p})')

    plt.xscale('log')  # Use log scale for better visualization
    plt.xlabel('Number of trials')
    plt.ylabel('Proportion of successes')
    plt.title('Convergence of Sample Proportion to True Probability')
    plt.legend()
    plt.grid(True, alpha=0.3)

    # Add annotation
    plt.annotate('As the number of trials increases,\nthe proportion approaches p',
                xy=(_num_trials, cumulative_mean[-1]), 
                xytext=(_num_trials/5, p + 0.1),
                arrowprops=dict(facecolor='black', shrink=0.05, width=1))

    plt.tight_layout()
    plt.gca()
    return cumulative_mean, p, trials


@app.cell(hide_code=True)
def _(mo, np, trials):
    # Calculate statistics from the simulation
    num_successes = np.sum(trials)
    num_trials = len(trials)
    proportion = num_successes / num_trials

    # Display the results
    mo.md(f"""
    ### Simulation Results

    - Number of trials: {num_trials}
    - Number of successes: {num_successes}
    - Proportion of successes: {proportion:.4f}

    This demonstrates how the sample proportion approaches the true probability $p$ as the number of trials increases.
    """)
    return num_successes, num_trials, proportion


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## 🤔 Test Your Understanding

        Pick which of these statements about Bernoulli random variables you think are correct:

        /// details | The variance of a Bernoulli random variable is always less than or equal to 0.25
        ✅ Correct! The variance $p(1-p)$ reaches its maximum value of 0.25 when $p = 0.5$.
        ///

        /// details | The expected value of a Bernoulli random variable must be either 0 or 1
        ❌ Incorrect! The expected value is $p$, which can be any value between 0 and 1.
        ///

        /// details | If $X \sim \text{Bern}(0.3)$ and $Y \sim \text{Bern}(0.7)$, then $X$ and $Y$ have the same variance
        ✅ Correct! $\text{Var}(X) = 0.3 \times 0.7 = 0.21$ and $\text{Var}(Y) = 0.7 \times 0.3 = 0.21$.
        ///

        /// details | Two independent coin flips can be modeled as the sum of two Bernoulli random variables
        ✅ Correct! The sum would follow a Binomial distribution with $n=2$.
        ///
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Applications of Bernoulli Random Variables

        Bernoulli random variables are used in many real-world scenarios:

        1. **Quality Control**: Testing if a manufactured item is defective (1) or not (0)

        2. **A/B Testing**: Determining if a user clicks (1) or doesn't click (0) on a website button

        3. **Medical Testing**: Checking if a patient tests positive (1) or negative (0) for a disease

        4. **Election Modeling**: Modeling if a particular voter votes for candidate A (1) or not (0)

        5. **Financial Markets**: Modeling if a stock price goes up (1) or down (0) in a simplified model

        Because Bernoulli random variables are parametric, as soon as you declare a random variable to be of type Bernoulli, you automatically know all of its pre-derived properties!
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Summary

        And that's a wrap on Bernoulli distributions! We've learnt the simplest of all probability distributions — the one that only has two possible outcomes. Flip a coin, check if an email is spam, see if your blind date shows up — these are all Bernoulli trials with success probability $p$. 

        The beauty of Bernoulli is in its simplicity: just set $p$ (the probability of success) and you're good to go! The PMF gives us $P(X=1) = p$ and $P(X=0) = 1-p$, while expectation is simply $p$ and variance is $p(1-p)$. Oh, and when you're tracking whether specific events happen or not? That's an indicator random variable — just another Bernoulli in disguise!

        Two key things to remember:

        /// note
        💡 **Maximum Variance**: A Bernoulli's variance $p(1-p)$ reaches its maximum at $p=0.5$, making a fair coin the most "unpredictable" Bernoulli random variable.

        💡 **Instant Properties**: When you identify a random variable as Bernoulli, you instantly know all its properties—expectation, variance, PMF—without additional calculations.
        ///

        Next up: Binomial distribution—where we'll see what happens when we let Bernoulli trials have a party and add themselves together!
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""#### Appendix (containing helper code for the notebook)""")
    return


@app.cell
def _():
    import marimo as mo
    return (mo,)


@app.cell(hide_code=True)
def _():
    from marimo import Html
    return (Html,)


@app.cell(hide_code=True)
def _():
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy import stats
    import math

    # Set style for consistent visualizations
    plt.style.use('seaborn-v0_8-whitegrid')
    plt.rcParams['figure.figsize'] = [10, 6]
    plt.rcParams['font.size'] = 12

    # Set random seed for reproducibility
    np.random.seed(42)
    return math, np, plt, stats


@app.cell(hide_code=True)
def _(mo):
    # Create a UI element for the parameter p
    p_slider = mo.ui.slider(0.01, 0.99, value=0.65, step=0.01, label="Parameter p")
    return (p_slider,)


if __name__ == "__main__":
    app.run()