Spaces:
Running
Running
File size: 48,574 Bytes
c591d7c 89edddf c591d7c 89edddf c591d7c 89edddf c591d7c 89edddf c591d7c 89edddf c591d7c 89edddf c591d7c 89edddf c591d7c 89edddf c591d7c 89edddf c591d7c 89edddf c591d7c 89edddf c591d7c 89edddf c591d7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "matplotlib==3.10.1",
# "scipy==1.15.2",
# "numpy==2.2.4",
# "polars==0.20.2",
# "plotly==5.18.0",
# ]
# ///
import marimo
__generated_with = "0.12.0"
app = marimo.App(width="medium", app_title="Maximum Likelihood Estimation")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Maximum Likelihood Estimation
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part5/mle/), by Stanford professor Chris Piech._
Maximum Likelihood Estimation (MLE) is a fundamental method in statistics for estimating parameters of a probability distribution. The central idea is elegantly simple: **choose the parameters that make the observed data most likely**.
In this notebook, we'll try to understand MLE, starting with the core concept of likelihood and how it differs from probability. We'll explore how to formulate MLE problems mathematically and then solve them for various common distributions. Along the way, I've included some interactive visualizations to help build your intuition about these concepts. You'll see how MLE applies to real-world scenarios like linear regression, and hopefully gain a deeper appreciation for why this technique is so widely used in statistics and machine learning. Think of MLE as detective work - we have some evidence (our data) and we're trying to figure out the most plausible explanation (our parameters) for what we've observed.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Likelihood: The Core Concept
Before diving into MLE, we need to understand what "likelihood" means in a statistical context.
### Data and Parameters
Suppose we have collected some data $X_1, X_2, \ldots, X_n$ that are independent and identically distributed (IID). We assume these data points come from a specific type of distribution (like Normal, Bernoulli, etc.) with unknown parameters $\theta$.
### What is Likelihood?
Likelihood measures how probable our observed data is, given specific values of the parameters $\theta$.
/// note
**Probability vs. Likelihood**
- **Probability**: Given parameters $\theta$, what's the chance of observing data $X$?
- **Likelihood**: Given observed data $X$, how likely are different parameter values $\theta$?
///
To simplify notation, we'll use $f(X=x|\Theta=\theta)$ to represent either the PMF or PDF of our data, conditioned on the parameters.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### The Likelihood Function
Since we assume our data points are independent, the likelihood of all our data is the product of the likelihoods of each individual data point:
$$L(\theta) = \prod_{i=1}^n f(X_i = x_i|\Theta = \theta)$$
This function $L(\theta)$ gives us the likelihood of observing our entire dataset for different parameter values $\theta$.
/// tip
**Key Insight**: Different parameter values produce different likelihoods for the same data. Better parameter values will make the observed data more likely.
///
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Maximum Likelihood Estimation
The core idea of MLE is to find the parameter values $\hat{\theta}$ that maximize the likelihood function:
$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \, L(\theta)$$
The notation $\hat{\theta}$ represents our best estimate of the true parameters based on the observed data.
### Working with Log-Likelihood
In practice, we usually work with the **log-likelihood** instead of the likelihood directly. Since logarithm is a monotonically increasing function, the maximum of $L(\theta)$ occurs at the same value of $\theta$ as the maximum of $\log L(\theta)$.
Taking the logarithm transforms our product into a sum, which is much easier to work with:
$$LL(\theta) = \log L(\theta) = \log \prod_{i=1}^n f(X_i=x_i|\Theta = \theta) = \sum_{i=1}^n \log f(X_i = x_i|\Theta = \theta)$$
/// warning
Working with products of many small probabilities can lead to numerical underflow. Taking the logarithm converts these products to sums, which is numerically more stable.
///
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Finding the Maximum
To find the values of $\theta$ that maximize the log-likelihood, we typically:
1. Take the derivative of $LL(\theta)$ with respect to each parameter
2. Set each derivative equal to zero
3. Solve for the parameters
Let's see this approach in action with some common distributions.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## MLE for Bernoulli Distribution
Let's start with a simple example: estimating the parameter $p$ of a Bernoulli distribution.
### The Model
A Bernoulli distribution has a single parameter $p$ which represents the probability of success (getting a value of 1). Its probability mass function (PMF) can be written as:
$$f(x|p) = p^x(1-p)^{1-x}, \quad x \in \{0, 1\}$$
This elegant formula works because:
- When $x = 1$: $f(1|p) = p^1(1-p)^0 = p$
- When $x = 0$: $f(0|p) = p^0(1-p)^1 = 1-p$
### Deriving the MLE
Given $n$ independent Bernoulli trials $X_1, X_2, \ldots, X_n$, we want to find the value of $p$ that maximizes the likelihood of our observed data.
Step 1: Write the likelihood function
$$L(p) = \prod_{i=1}^n p^{x_i}(1-p)^{1-x_i}$$
Step 2: Take the logarithm to get the log-likelihood
$$\begin{align*}
LL(p) &= \sum_{i=1}^n \log(p^{x_i}(1-p)^{1-x_i}) \\
&= \sum_{i=1}^n \left[x_i \log(p) + (1-x_i)\log(1-p)\right] \\
&= \left(\sum_{i=1}^n x_i\right) \log(p) + \left(n - \sum_{i=1}^n x_i\right) \log(1-p) \\
&= Y\log(p) + (n-Y)\log(1-p)
\end{align*}$$
where $Y = \sum_{i=1}^n x_i$ is the total number of successes.
Step 3: Find the value of $p$ that maximizes $LL(p)$ by setting the derivative to zero
$$\begin{align*}
\frac{d\,LL(p)}{dp} &= \frac{Y}{p} - \frac{n-Y}{1-p} = 0 \\
\frac{Y}{p} &= \frac{n-Y}{1-p} \\
Y(1-p) &= p(n-Y) \\
Y - Yp &= pn - pY \\
Y &= pn \\
\hat{p} &= \frac{Y}{n} = \frac{\sum_{i=1}^n x_i}{n}
\end{align*}$$
/// tip
The MLE for the parameter $p$ in a Bernoulli distribution is simply the **sample mean** - the proportion of successes in our data!
///
"""
)
return
@app.cell(hide_code=True)
def _(controls):
controls.center()
return
@app.cell(hide_code=True)
def _(generate_button, mo, np, plt, sample_size_slider, true_p_slider):
# generate bernoulli samples when button is clicked
bernoulli_button_value = generate_button.value
# get parameter values
bernoulli_true_p = true_p_slider.value
bernoulli_n = sample_size_slider.value
# generate data
bernoulli_data = np.random.binomial(1, bernoulli_true_p, size=bernoulli_n)
bernoulli_Y = np.sum(bernoulli_data)
bernoulli_p_hat = bernoulli_Y / bernoulli_n
# create visualization
bernoulli_fig, (bernoulli_ax1, bernoulli_ax2) = plt.subplots(1, 2, figsize=(12, 5))
# plot data histogram
bernoulli_ax1.hist(bernoulli_data, bins=[-0.5, 0.5, 1.5], rwidth=0.8, color='lightblue')
bernoulli_ax1.set_xticks([0, 1])
bernoulli_ax1.set_xticklabels(['Failure (0)', 'Success (1)'])
bernoulli_ax1.set_title(f'Bernoulli Data: {bernoulli_n} samples')
bernoulli_ax1.set_ylabel('Count')
bernoulli_y_counts = [bernoulli_n - bernoulli_Y, bernoulli_Y]
for bernoulli_idx, bernoulli_count in enumerate(bernoulli_y_counts):
bernoulli_ax1.text(bernoulli_idx, bernoulli_count/2, f"{bernoulli_count}",
ha='center', va='center',
color='white' if bernoulli_idx == 0 else 'black',
fontweight='bold')
# calculate log-likelihood function
bernoulli_p_values = np.linspace(0.01, 0.99, 100)
bernoulli_ll_values = np.zeros_like(bernoulli_p_values)
for bernoulli_i, bernoulli_p in enumerate(bernoulli_p_values):
bernoulli_ll_values[bernoulli_i] = bernoulli_Y * np.log(bernoulli_p) + (bernoulli_n - bernoulli_Y) * np.log(1 - bernoulli_p)
# plot log-likelihood
bernoulli_ax2.plot(bernoulli_p_values, bernoulli_ll_values, 'b-', linewidth=2)
bernoulli_ax2.axvline(x=bernoulli_p_hat, color='r', linestyle='--', label=f'MLE: $\\hat{{p}} = {bernoulli_p_hat:.3f}$')
bernoulli_ax2.axvline(x=bernoulli_true_p, color='g', linestyle='--', label=f'True: $p = {bernoulli_true_p:.3f}$')
bernoulli_ax2.set_xlabel('$p$ (probability of success)')
bernoulli_ax2.set_ylabel('Log-Likelihood')
bernoulli_ax2.set_title('Log-Likelihood Function')
bernoulli_ax2.legend()
plt.tight_layout()
plt.gca()
# Create markdown to explain the results
bernoulli_explanation = mo.md(
f"""
### Bernoulli MLE Results
**True parameter**: $p = {bernoulli_true_p:.3f}$
**Sample statistics**: {bernoulli_Y} successes out of {bernoulli_n} trials
**MLE estimate**: $\\hat{{p}} = \\frac{{{bernoulli_Y}}}{{{bernoulli_n}}} = {bernoulli_p_hat:.3f}$
The plot on the right shows the log-likelihood function $LL(p) = Y\\log(p) + (n-Y)\\log(1-p)$.
The red dashed line marks the maximum likelihood estimate $\\hat{{p}}$, and the green dashed line
shows the true parameter value.
/// note
Try increasing the sample size to see how the MLE estimate gets closer to the true parameter value!
///
"""
)
# Display plot and explanation together
mo.vstack([
bernoulli_fig,
bernoulli_explanation
])
return (
bernoulli_Y,
bernoulli_ax1,
bernoulli_ax2,
bernoulli_button_value,
bernoulli_count,
bernoulli_data,
bernoulli_explanation,
bernoulli_fig,
bernoulli_i,
bernoulli_idx,
bernoulli_ll_values,
bernoulli_n,
bernoulli_p,
bernoulli_p_hat,
bernoulli_p_values,
bernoulli_true_p,
bernoulli_y_counts,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## MLE for Normal Distribution
Next, let's look at a more complex example: estimating the parameters $\mu$ and $\sigma^2$ of a Normal distribution.
### The Model
A Normal (Gaussian) distribution has two parameters:
- $\mu$: the mean
- $\sigma^2$: the variance
Its probability density function (PDF) is:
$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$
### Deriving the MLE
Given $n$ independent samples $X_1, X_2, \ldots, X_n$ from a Normal distribution, we want to find the values of $\mu$ and $\sigma^2$ that maximize the likelihood of our observed data.
Step 1: Write the likelihood function
$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$
Step 2: Take the logarithm to get the log-likelihood
$$\begin{align*}
LL(\mu, \sigma^2) &= \log\prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \\
&= \sum_{i=1}^n \log\left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)\right] \\
&= \sum_{i=1}^n \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(x_i - \mu)^2}{2\sigma^2}\right] \\
&= -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2
\end{align*}$$
Step 3: Find the values of $\mu$ and $\sigma^2$ that maximize $LL(\mu, \sigma^2)$ by setting the partial derivatives to zero.
For $\mu$:
$$\begin{align*}
\frac{\partial LL(\mu, \sigma^2)}{\partial \mu} &= \frac{1}{\sigma^2}\sum_{i=1}^n (x_i - \mu) = 0 \\
\sum_{i=1}^n (x_i - \mu) &= 0 \\
\sum_{i=1}^n x_i &= n\mu \\
\hat{\mu} &= \frac{1}{n}\sum_{i=1}^n x_i
\end{align*}$$
For $\sigma^2$:
$$\begin{align*}
\frac{\partial LL(\mu, \sigma^2)}{\partial \sigma^2} &= -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2}\sum_{i=1}^n (x_i - \mu)^2 = 0 \\
\frac{n}{2\sigma^2} &= \frac{1}{2(\sigma^2)^2}\sum_{i=1}^n (x_i - \mu)^2 \\
n\sigma^2 &= \sum_{i=1}^n (x_i - \mu)^2 \\
\hat{\sigma}^2 &= \frac{1}{n}\sum_{i=1}^n (x_i - \hat{\mu})^2
\end{align*}$$
/// tip
The MLE for a Normal distribution gives us:
- $\hat{\mu}$ = sample mean
- $\hat{\sigma}^2$ = sample variance (using $n$ in the denominator, not $n-1$)
///
"""
)
return
@app.cell(hide_code=True)
def _(normal_controls):
normal_controls.center()
return
@app.cell(hide_code=True)
def _(
mo,
normal_generate_button,
normal_sample_size_slider,
np,
plt,
true_mu_slider,
true_sigma_slider,
):
# generate normal samples when button is clicked
normal_button_value = normal_generate_button.value
# get parameter values
normal_true_mu = true_mu_slider.value
normal_true_sigma = true_sigma_slider.value
normal_true_var = normal_true_sigma**2
normal_n = normal_sample_size_slider.value
# generate random data
normal_data = np.random.normal(normal_true_mu, normal_true_sigma, size=normal_n)
# calculate mle estimates
normal_mu_hat = np.mean(normal_data)
normal_sigma2_hat = np.mean((normal_data - normal_mu_hat)**2) # mle variance using n
normal_sigma_hat = np.sqrt(normal_sigma2_hat)
# create visualization
normal_fig, (normal_ax1, normal_ax2) = plt.subplots(1, 2, figsize=(12, 5))
# plot histogram and density curves
normal_bins = np.linspace(min(normal_data) - 1, max(normal_data) + 1, 30)
normal_ax1.hist(normal_data, bins=normal_bins, density=True, alpha=0.6, color='lightblue', label='Data Histogram')
# plot range for density curves
normal_x = np.linspace(min(normal_data) - 2*normal_true_sigma, max(normal_data) + 2*normal_true_sigma, 1000)
# plot true and mle densities
normal_true_pdf = (1/(normal_true_sigma * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((normal_x - normal_true_mu)/normal_true_sigma)**2)
normal_ax1.plot(normal_x, normal_true_pdf, 'g-', linewidth=2, label=f'True: N({normal_true_mu:.2f}, {normal_true_var:.2f})')
normal_mle_pdf = (1/(normal_sigma_hat * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((normal_x - normal_mu_hat)/normal_sigma_hat)**2)
normal_ax1.plot(normal_x, normal_mle_pdf, 'r--', linewidth=2, label=f'MLE: N({normal_mu_hat:.2f}, {normal_sigma2_hat:.2f})')
normal_ax1.set_xlabel('x')
normal_ax1.set_ylabel('Density')
normal_ax1.set_title(f'Normal Distribution: {normal_n} samples')
normal_ax1.legend()
# create contour plot of log-likelihood
normal_mu_range = np.linspace(normal_mu_hat - 2, normal_mu_hat + 2, 100)
normal_sigma_range = np.linspace(max(0.1, normal_sigma_hat - 1), normal_sigma_hat + 1, 100)
normal_mu_grid, normal_sigma_grid = np.meshgrid(normal_mu_range, normal_sigma_range)
normal_ll_grid = np.zeros_like(normal_mu_grid)
# calculate log-likelihood for each grid point
for normal_i in range(normal_mu_grid.shape[0]):
for normal_j in range(normal_mu_grid.shape[1]):
normal_mu = normal_mu_grid[normal_i, normal_j]
normal_sigma = normal_sigma_grid[normal_i, normal_j]
normal_ll = -normal_n/2 * np.log(2*np.pi*normal_sigma**2) - np.sum((normal_data - normal_mu)**2)/(2*normal_sigma**2)
normal_ll_grid[normal_i, normal_j] = normal_ll
# plot log-likelihood contour
normal_contour = normal_ax2.contourf(normal_mu_grid, normal_sigma_grid, normal_ll_grid, levels=50, cmap='viridis')
normal_ax2.set_xlabel('μ (mean)')
normal_ax2.set_ylabel('σ (standard deviation)')
normal_ax2.set_title('Log-Likelihood Contour')
# mark mle and true params
normal_ax2.plot(normal_mu_hat, normal_sigma_hat, 'rx', markersize=10, label='MLE Estimate')
normal_ax2.plot(normal_true_mu, normal_true_sigma, 'g*', markersize=10, label='True Parameters')
normal_ax2.legend()
plt.colorbar(normal_contour, ax=normal_ax2, label='Log-Likelihood')
plt.tight_layout()
plt.gca()
# relevant markdown for the results
normal_explanation = mo.md(
f"""
### Normal MLE Results
**True parameters**: $\mu = {normal_true_mu:.3f}$, $\sigma^2 = {normal_true_var:.3f}$
**MLE estimates**: $\hat{{\mu}} = {normal_mu_hat:.3f}$, $\hat{{\sigma}}^2 = {normal_sigma2_hat:.3f}$
The left plot shows the data histogram with the true Normal distribution (green) and the MLE-estimated distribution (red dashed).
The right plot shows the log-likelihood function as a contour map in the $(\mu, \sigma)$ parameter space. The maximum likelihood estimates are marked with a red X, while the true parameters are marked with a green star.
/// note
Notice how the log-likelihood contour is more stretched along the σ axis than the μ axis. This indicates that we typically estimate the mean with greater precision than the standard deviation.
///
/// tip
Increase the sample size to see how the MLE estimates converge to the true parameter values!
///
"""
)
# plot and explanation together
mo.vstack([
normal_fig,
normal_explanation
])
return (
normal_ax1,
normal_ax2,
normal_bins,
normal_button_value,
normal_contour,
normal_data,
normal_explanation,
normal_fig,
normal_i,
normal_j,
normal_ll,
normal_ll_grid,
normal_mle_pdf,
normal_mu,
normal_mu_grid,
normal_mu_hat,
normal_mu_range,
normal_n,
normal_sigma,
normal_sigma2_hat,
normal_sigma_grid,
normal_sigma_hat,
normal_sigma_range,
normal_true_mu,
normal_true_pdf,
normal_true_sigma,
normal_true_var,
normal_x,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## MLE for Linear Regression
Now let's look at a more practical example: using MLE to derive linear regression.
### The Model
Consider a model where:
- We have pairs of observations $(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)$
- The relationship between $X$ and $Y$ follows: $Y = \theta X + Z$
- $Z \sim N(0, \sigma^2)$ is random noise
- Our goal is to estimate the parameter $\theta$
This means that for a given $X_i$, the conditional distribution of $Y_i$ is:
$$Y_i | X_i \sim N(\theta X_i, \sigma^2)$$
### Deriving the MLE
Step 1: Write the likelihood function for each data point $(X_i, Y_i)$
$$f(Y_i | X_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(Y_i - \theta X_i)^2}{2\sigma^2}\right)$$
Step 2: Write the likelihood for all data
$$\begin{align*}
L(\theta) &= \prod_{i=1}^n f(Y_i, X_i | \theta) \\
&= \prod_{i=1}^n f(Y_i | X_i, \theta) \cdot f(X_i)
\end{align*}$$
Since $f(X_i)$ doesn't depend on $\theta$, we can simplify:
$$L(\theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(Y_i - \theta X_i)^2}{2\sigma^2}\right) \cdot f(X_i)$$
Step 3: Take the logarithm to get the log-likelihood
$$\begin{align*}
LL(\theta) &= \log \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(Y_i - \theta X_i)^2}{2\sigma^2}\right) \cdot f(X_i) \\
&= \sum_{i=1}^n \log\left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(Y_i - \theta X_i)^2}{2\sigma^2}\right)\right] + \sum_{i=1}^n \log f(X_i) \\
&= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \theta X_i)^2 + \sum_{i=1}^n \log f(X_i)
\end{align*}$$
Step 4: Since we only care about maximizing with respect to $\theta$, we can drop terms that don't contain $\theta$:
$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left[ -\frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \theta X_i)^2 \right]$$
This is equivalent to:
$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^n (Y_i - \theta X_i)^2$$
Step 5: Find the value of $\theta$ that minimizes the sum of squared errors by setting the derivative to zero:
$$\begin{align*}
\frac{d}{d\theta} \sum_{i=1}^n (Y_i - \theta X_i)^2 &= 0 \\
\sum_{i=1}^n -2X_i(Y_i - \theta X_i) &= 0 \\
\sum_{i=1}^n X_i Y_i - \theta X_i^2 &= 0 \\
\sum_{i=1}^n X_i Y_i &= \theta \sum_{i=1}^n X_i^2 \\
\hat{\theta} &= \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n X_i^2}
\end{align*}$$
/// tip
**Key Insight**: MLE for this simple linear model gives us the least squares estimator! This is an important connection between MLE and regression.
///
"""
)
return
@app.cell(hide_code=True)
def _(linear_controls):
linear_controls.center()
return
@app.cell(hide_code=True)
def _(
linear_generate_button,
linear_sample_size_slider,
mo,
noise_sigma_slider,
np,
plt,
true_theta_slider,
):
# linear model data calc when button is clicked
linear_button_value = linear_generate_button.value
# get parameter values
linear_true_theta = true_theta_slider.value
linear_noise_sigma = noise_sigma_slider.value
linear_n = linear_sample_size_slider.value
# generate x data (uniformly between -3 and 3)
linear_X = np.random.uniform(-3, 3, size=linear_n)
# generate y data according to the model y = θx + z
linear_Z = np.random.normal(0, linear_noise_sigma, size=linear_n)
linear_Y = linear_true_theta * linear_X + linear_Z
# calculate mle estimate
linear_theta_hat = np.sum(linear_X * linear_Y) / np.sum(linear_X**2)
# calculate sse for different theta values
linear_theta_range = np.linspace(linear_true_theta - 1.5, linear_true_theta + 1.5, 100)
linear_sse_values = np.zeros_like(linear_theta_range)
for linear_i, linear_theta in enumerate(linear_theta_range):
linear_y_pred = linear_theta * linear_X
linear_sse_values[linear_i] = np.sum((linear_Y - linear_y_pred)**2)
# convert sse to log-likelihood (ignoring constant terms)
linear_ll_values = -linear_sse_values / (2 * linear_noise_sigma**2)
# create visualization
linear_fig, (linear_ax1, linear_ax2) = plt.subplots(1, 2, figsize=(12, 5))
# plot scatter plot with regression lines
linear_ax1.scatter(linear_X, linear_Y, color='blue', alpha=0.6, label='Data points')
# plot range for regression lines
linear_x_line = np.linspace(-3, 3, 100)
# plot true and mle regression lines
linear_ax1.plot(linear_x_line, linear_true_theta * linear_x_line, 'g-', linewidth=2, label=f'True: Y = {linear_true_theta:.2f}X')
linear_ax1.plot(linear_x_line, linear_theta_hat * linear_x_line, 'r--', linewidth=2, label=f'MLE: Y = {linear_theta_hat:.2f}X')
linear_ax1.set_xlabel('X')
linear_ax1.set_ylabel('Y')
linear_ax1.set_title(f'Linear Regression: {linear_n} data points')
linear_ax1.grid(True, alpha=0.3)
linear_ax1.legend()
# plot log-likelihood function
linear_ax2.plot(linear_theta_range, linear_ll_values, 'b-', linewidth=2)
linear_ax2.axvline(x=linear_theta_hat, color='r', linestyle='--', label=f'MLE: θ = {linear_theta_hat:.3f}')
linear_ax2.axvline(x=linear_true_theta, color='g', linestyle='--', label=f'True: θ = {linear_true_theta:.3f}')
linear_ax2.set_xlabel('θ (slope parameter)')
linear_ax2.set_ylabel('Log-Likelihood')
linear_ax2.set_title('Log-Likelihood Function')
linear_ax2.grid(True, alpha=0.3)
linear_ax2.legend()
plt.tight_layout()
plt.gca()
# relevant markdown to explain results
linear_explanation = mo.md(
f"""
### Linear Regression MLE Results
**True parameter**: $\\theta = {linear_true_theta:.3f}$
**MLE estimate**: $\\hat{{\\theta}} = {linear_theta_hat:.3f}$
The left plot shows the scatter plot of data points with the true regression line (green) and the MLE-estimated regression line (red dashed).
The right plot shows the log-likelihood function for different values of $\\theta$. The maximum likelihood estimate is marked with a red dashed line, and the true parameter is marked with a green dashed line.
/// note
The MLE estimate $\\hat{{\\theta}} = \\frac{{\\sum_{{i=1}}^n X_i Y_i}}{{\\sum_{{i=1}}^n X_i^2}}$ minimizes the sum of squared errors between the predicted and actual Y values.
///
/// tip
Try increasing the noise level to see how it affects the precision of the estimate!
///
"""
)
# show plot and explanation
mo.vstack([
linear_fig,
linear_explanation
])
return (
linear_X,
linear_Y,
linear_Z,
linear_ax1,
linear_ax2,
linear_button_value,
linear_explanation,
linear_fig,
linear_i,
linear_ll_values,
linear_n,
linear_noise_sigma,
linear_sse_values,
linear_theta,
linear_theta_hat,
linear_theta_range,
linear_true_theta,
linear_x_line,
linear_y_pred,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Interactive Concept: Density/Mass Functions vs. Likelihood
To better understand the distinction between likelihood and density/mass functions, let's create an interactive visualization. This concept is crucial for understanding why MLE works.
"""
)
return
@app.cell(hide_code=True)
def _(concept_controls):
concept_controls.center()
return
@app.cell(hide_code=True)
def _(concept_dist_type, mo, np, perspective_selector, plt, stats):
# current distribution type
concept_dist_type_value = concept_dist_type.value
# view mode from dropdown
concept_view_mode = "likelihood" if perspective_selector.value == "Likelihood Perspective" else "probability"
# visualization based on distribution type
concept_fig, concept_ax = plt.subplots(figsize=(10, 6))
if concept_dist_type_value == "Normal":
if concept_view_mode == "probability":
# density function perspective: fixed params, varying data
concept_mu = 0 # fixed parameter
concept_sigma = 1 # fixed parameter
# generate x values for the pdf
concept_x = np.linspace(-4, 4, 1000)
# plot pdf
concept_pdf = stats.norm.pdf(concept_x, concept_mu, concept_sigma)
concept_ax.plot(concept_x, concept_pdf, 'b-', linewidth=2, label='PDF: N(0, 1)')
# highlight specific data values
concept_data_points = [-2, -1, 0, 1, 2]
concept_colors = ['#FF9999', '#FFCC99', '#99FF99', '#99CCFF', '#CC99FF']
for concept_i, concept_data in enumerate(concept_data_points):
concept_prob = stats.norm.pdf(concept_data, concept_mu, concept_sigma)
concept_ax.plot([concept_data, concept_data], [0, concept_prob], concept_colors[concept_i], linewidth=2)
concept_ax.scatter(concept_data, concept_prob, color=concept_colors[concept_i], s=50,
label=f'PDF at x={concept_data}: {concept_prob:.3f}')
concept_ax.set_xlabel('Data (x)')
concept_ax.set_ylabel('Probability Density')
concept_ax.set_title('Density Function Perspective: Fixed Parameters (μ=0, σ=1), Different Data Points')
else: # likelihood perspective
# likelihood perspective: fixed data, varying parameters
concept_data_point = 1.5 # fixed observed data
# different possible parameter values (means)
concept_mus = [-1, 0, 1, 2, 3]
concept_sigma = 1
# generate x values for multiple pdfs
concept_x = np.linspace(-4, 6, 1000)
concept_colors = ['#FF9999', '#FFCC99', '#99FF99', '#99CCFF', '#CC99FF']
for concept_i, concept_mu in enumerate(concept_mus):
concept_pdf = stats.norm.pdf(concept_x, concept_mu, concept_sigma)
concept_ax.plot(concept_x, concept_pdf, color=concept_colors[concept_i], linewidth=2, alpha=0.7,
label=f'N({concept_mu}, 1)')
# mark the likelihood of the data point for this param
concept_likelihood = stats.norm.pdf(concept_data_point, concept_mu, concept_sigma)
concept_ax.plot([concept_data_point, concept_data_point], [0, concept_likelihood], concept_colors[concept_i], linewidth=2)
concept_ax.scatter(concept_data_point, concept_likelihood, color=concept_colors[concept_i], s=50,
label=f'L(μ={concept_mu}|X=1.5) = {concept_likelihood:.3f}')
# add vertical line at the observed data point
concept_ax.axvline(x=concept_data_point, color='black', linestyle='--',
label=f'Observed data: X=1.5')
concept_ax.set_xlabel('Data (x)')
concept_ax.set_ylabel('Probability Density / Likelihood')
concept_ax.set_title('Likelihood Perspective: Fixed Data Point (X=1.5), Different Parameter Values')
elif concept_dist_type_value == "Bernoulli":
if concept_view_mode == "probability":
# probability perspective: fixed parameter, two possible data values
concept_p = 0.3 # fixed parameter
# bar chart for p(x=0) and p(x=1)
concept_ax.bar([0, 1], [1-concept_p, concept_p], width=0.4, color=['#99CCFF', '#FF9999'],
alpha=0.7, label=f'PMF: Bernoulli({concept_p})')
# text showing probabilities
concept_ax.text(0, (1-concept_p)/2, f'P(X=0|p={concept_p}) = {1-concept_p:.3f}', ha='center', va='center', fontweight='bold')
concept_ax.text(1, concept_p/2, f'P(X=1|p={concept_p}) = {concept_p:.3f}', ha='center', va='center', fontweight='bold')
concept_ax.set_xlabel('Data (x)')
concept_ax.set_ylabel('Probability')
concept_ax.set_xticks([0, 1])
concept_ax.set_xticklabels(['X=0', 'X=1'])
concept_ax.set_ylim(0, 1)
concept_ax.set_title('Probability Perspective: Fixed Parameter (p=0.3), Different Data Values')
else: # likelihood perspective
# likelihood perspective: fixed data, varying parameter
concept_data_point = 1 # fixed observed data (success)
# different possible parameter values
concept_p_values = np.linspace(0.01, 0.99, 100)
# calculate likelihood for each p value
if concept_data_point == 1:
# for x=1, likelihood is p
concept_likelihood = concept_p_values
concept_ax.plot(concept_p_values, concept_likelihood, 'b-', linewidth=2,
label=f'L(p|X=1) = p')
# highlight specific values
concept_highlight_ps = [0.2, 0.5, 0.8]
concept_colors = ['#FF9999', '#99FF99', '#99CCFF']
for concept_i, concept_p in enumerate(concept_highlight_ps):
concept_ax.plot([concept_p, concept_p], [0, concept_p], concept_colors[concept_i], linewidth=2)
concept_ax.scatter(concept_p, concept_p, color=concept_colors[concept_i], s=50,
label=f'L(p={concept_p}|X=1) = {concept_p:.3f}')
concept_ax.set_title('Likelihood Perspective: Fixed Data Point (X=1), Different Parameter Values')
else: # x=0
# for x = 0, likelihood is (1-p)
concept_likelihood = 1 - concept_p_values
concept_ax.plot(concept_p_values, concept_likelihood, 'r-', linewidth=2,
label=f'L(p|X=0) = (1-p)')
# highlight some specific values
concept_highlight_ps = [0.2, 0.5, 0.8]
concept_colors = ['#FF9999', '#99FF99', '#99CCFF']
for concept_i, concept_p in enumerate(concept_highlight_ps):
concept_ax.plot([concept_p, concept_p], [0, 1-concept_p], concept_colors[concept_i], linewidth=2)
concept_ax.scatter(concept_p, 1-concept_p, color=concept_colors[concept_i], s=50,
label=f'L(p={concept_p}|X=0) = {1-concept_p:.3f}')
concept_ax.set_title('Likelihood Perspective: Fixed Data Point (X=0), Different Parameter Values')
concept_ax.set_xlabel('Parameter (p)')
concept_ax.set_ylabel('Likelihood')
concept_ax.set_xlim(0, 1)
concept_ax.set_ylim(0, 1)
elif concept_dist_type_value == "Poisson":
if concept_view_mode == "probability":
# probability perspective: fixed parameter, different data values
concept_lam = 2.5 # fixed parameter
# pmf for different x values plot
concept_x_values = np.arange(0, 10)
concept_pmf_values = stats.poisson.pmf(concept_x_values, concept_lam)
concept_ax.bar(concept_x_values, concept_pmf_values, width=0.4, color='#99CCFF',
alpha=0.7, label=f'PMF: Poisson({concept_lam})')
# highlight a few specific values
concept_highlight_xs = [1, 2, 3, 4]
concept_colors = ['#FF9999', '#99FF99', '#FFCC99', '#CC99FF']
for concept_i, concept_x in enumerate(concept_highlight_xs):
concept_prob = stats.poisson.pmf(concept_x, concept_lam)
concept_ax.scatter(concept_x, concept_prob, color=concept_colors[concept_i], s=50,
label=f'P(X={concept_x}|λ={concept_lam}) = {concept_prob:.3f}')
concept_ax.set_xlabel('Data (x)')
concept_ax.set_ylabel('Probability')
concept_ax.set_xticks(concept_x_values)
concept_ax.set_title('Probability Perspective: Fixed Parameter (λ=2.5), Different Data Values')
else: # likelihood perspective
# likelihood perspective: fixed data, varying parameter
concept_data_point = 4 # fixed observed data
# different possible param values
concept_lambda_values = np.linspace(0.1, 8, 100)
# calc likelihood for each lambda value
concept_likelihood = stats.poisson.pmf(concept_data_point, concept_lambda_values)
concept_ax.plot(concept_lambda_values, concept_likelihood, 'b-', linewidth=2,
label=f'L(λ|X={concept_data_point})')
# highlight some specific values
concept_highlight_lambdas = [1, 2, 4, 6]
concept_colors = ['#FF9999', '#99FF99', '#99CCFF', '#FFCC99']
for concept_i, concept_lam in enumerate(concept_highlight_lambdas):
concept_like_val = stats.poisson.pmf(concept_data_point, concept_lam)
concept_ax.plot([concept_lam, concept_lam], [0, concept_like_val], concept_colors[concept_i], linewidth=2)
concept_ax.scatter(concept_lam, concept_like_val, color=concept_colors[concept_i], s=50,
label=f'L(λ={concept_lam}|X={concept_data_point}) = {concept_like_val:.3f}')
concept_ax.set_xlabel('Parameter (λ)')
concept_ax.set_ylabel('Likelihood')
concept_ax.set_title(f'Likelihood Perspective: Fixed Data Point (X={concept_data_point}), Different Parameter Values')
concept_ax.legend(loc='best', fontsize=9)
concept_ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.gca()
# relevant explanation based on view mode
if concept_view_mode == "probability":
concept_explanation = mo.md(
f"""
### Density/Mass Function Perspective
In the **density/mass function perspective**, the parameters of the distribution are **fixed and known**, and we evaluate the function at **different possible data values**.
For the {concept_dist_type_value} distribution, we've fixed the parameter{'s' if concept_dist_type_value == 'Normal' else ''} and shown the {'density' if concept_dist_type_value == 'Normal' else 'probability mass'} function evaluated at different data points.
This is the typical perspective when:
- We know the true parameters of a distribution
- We want to evaluate the {'density' if concept_dist_type_value == 'Normal' else 'probability mass'} at different observations
- We make predictions based on our model
**Mathematical notation**: $f(x | \theta)$
"""
)
else: # likelihood perspective
concept_explanation = mo.md(
f"""
### Likelihood Perspective
In the **likelihood perspective**, the observed data is **fixed and known**, and we calculate how likely different parameter values are to have generated that data.
For the {concept_dist_type_value} distribution, we've fixed the observed data point{'s' if concept_dist_type_value == 'Normal' else ''} and shown the likelihood of different parameter values.
This is the perspective used in MLE:
- We have observed data
- We don't know the true parameters
- We want to find parameters that best explain our observations
**Mathematical notation**: $L(\theta | X = x)$
/// tip
The value of $\\theta$ that maximizes this likelihood function is the MLE estimate $\\hat{{\\theta}}$!
///
"""
)
# Display plot and explanation together
mo.vstack([
concept_fig,
concept_explanation
])
return (
concept_ax,
concept_colors,
concept_data,
concept_data_point,
concept_data_points,
concept_dist_type_value,
concept_explanation,
concept_fig,
concept_highlight_lambdas,
concept_highlight_ps,
concept_highlight_xs,
concept_i,
concept_lam,
concept_lambda_values,
concept_like_val,
concept_likelihood,
concept_mu,
concept_mus,
concept_p,
concept_p_values,
concept_pdf,
concept_pmf_values,
concept_prob,
concept_sigma,
concept_view_mode,
concept_x,
concept_x_values,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🤔 Test Your Understanding
Which of the following statements about Maximum Likelihood Estimation are correct? Click each statement to check your answer.
/// details | Probability and likelihood have different interpretations: probability measures the chance of data given parameters, while likelihood measures how likely parameters are given data.
✅ **Correct!**
Probability measures how likely it is to observe particular data when we know the parameters. Likelihood measures how likely particular parameter values are, given observed data.
Mathematically, probability is $P(X=x|\theta)$ while likelihood is $L(\theta|X=x)$.
///
/// details | We use log-likelihood instead of likelihood because it's mathematically simpler and numerically more stable.
✅ **Correct!**
We work with log-likelihood for several reasons:
1. It converts products into sums, which is easier to work with mathematically
2. It avoids numerical underflow when multiplying many small probabilities
3. Logarithm is a monotonically increasing function, so the maximum of the likelihood occurs at the same parameter values as the maximum of the log-likelihood
///
/// details | For a Bernoulli distribution, the MLE for parameter p is the sample mean of the observations.
✅ **Correct!**
For a Bernoulli distribution with parameter $p$, given $n$ independent samples $X_1, X_2, \ldots, X_n$, the MLE estimator is:
$$\hat{p} = \frac{\sum_{i=1}^n X_i}{n}$$
This is simply the sample mean, or the proportion of successes (1s) in the data.
///
/// details | For a Normal distribution, MLE gives unbiased estimates for both mean and variance parameters.
❌ **Incorrect.**
While the MLE for the mean ($\hat{\mu} = \frac{1}{n}\sum_{i=1}^n X_i$) is unbiased, the MLE for variance:
$$\hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n (X_i - \hat{\mu})^2$$
is a biased estimator. It uses $n$ in the denominator rather than $n-1$ used in the unbiased estimator.
///
/// details | MLE estimators are always unbiased regardless of the distribution.
❌ **Incorrect.**
MLE is not always unbiased, though it often is asymptotically unbiased (meaning the bias approaches zero as the sample size increases).
A notable example is the MLE estimator for the variance of a Normal distribution:
$$\hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n (X_i - \hat{\mu})^2$$
This estimator is biased, which is why we often use the unbiased estimator:
$$s^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \hat{\mu})^2$$
Despite occasional bias, MLE estimators have many desirable properties, including consistency and asymptotic efficiency.
///
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Summary
Maximum Likelihood Estimation really is one of those elegant ideas that sits at the core of modern statistics. When you get down to it, MLE is just about finding the most plausible explanation for the data we've observed. It's like being a detective - you have some clues (your data), and you're trying to piece together the most likely story (your parameters) that explains them.
We've seen how this works with different distributions. For the Bernoulli, it simply gives us the sample proportion. For the Normal, it gives us the sample mean and a slightly biased estimate of variance. And for linear regression, it provides a mathematical justification for the least squares method that everyone learns in basic stats classes.
What makes MLE so useful in practice is that it tends to give us estimates with good properties. As you collect more data, the estimates generally get closer to the true values (consistency) and do so efficiently. That's why MLE is everywhere in statistics and machine learning - from simple regression models to complex neural networks.
The most important takeaway? Next time you're fitting a model to data, remember that you're not just following a recipe - you're finding the parameters that make your observed data most likely to have occurred. That's the essence of statistical inference.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Further Reading
If you're curious to dive deeper into this topic, check out "Statistical Inference" by Casella and Berger - it's the classic text that many statisticians learned from. For a more machine learning angle, Bishop's "Pattern Recognition and Machine Learning" shows how MLE connects to more advanced topics like EM algorithms and Bayesian methods.
Beyond the basics we've covered, you might explore Bayesian estimation (which incorporates prior knowledge), Fisher Information (which tells us how precisely we can estimate parameters), or the EM algorithm (for when we have missing data or latent variables). Each of these builds on the foundation of likelihood that we've established here.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""## Appendix (helper functions and imports)""")
return
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def _():
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import plotly.graph_objects as go
import polars as pl
from matplotlib import cm
# Set a consistent random seed for reproducibility
np.random.seed(42)
# Set a nice style for matplotlib
plt.style.use('seaborn-v0_8-darkgrid')
return cm, go, np, pl, plt, stats
@app.cell(hide_code=True)
def _(mo):
# Create interactive elements
true_p_slider = mo.ui.slider(
start =0.01,
stop =0.99,
value=0.3,
step=0.01,
label="True probability (p)"
)
sample_size_slider = mo.ui.slider(
start =10,
stop =1000,
value=100,
step=10,
label="Sample size (n)"
)
generate_button = mo.ui.button(label="Generate New Sample", kind="success")
controls = mo.vstack([
mo.vstack([true_p_slider, sample_size_slider]),
generate_button
], justify="space-between")
return controls, generate_button, sample_size_slider, true_p_slider
@app.cell(hide_code=True)
def _(mo):
# Create interactive elements for Normal distribution
true_mu_slider = mo.ui.slider(
start =-5,
stop =5,
value=0,
step=0.1,
label="True mean (μ)"
)
true_sigma_slider = mo.ui.slider(
start =0.5,
stop =3,
value=1,
step=0.1,
label="True standard deviation (σ)"
)
normal_sample_size_slider = mo.ui.slider(
start =10,
stop =500,
value=50,
step=10,
label="Sample size (n)"
)
normal_generate_button = mo.ui.button(label="Generate New Sample", kind="warn")
normal_controls = mo.hstack([
mo.vstack([true_mu_slider, true_sigma_slider, normal_sample_size_slider]),
normal_generate_button
], justify="space-between")
return (
normal_controls,
normal_generate_button,
normal_sample_size_slider,
true_mu_slider,
true_sigma_slider,
)
@app.cell(hide_code=True)
def _(mo):
# Create interactive elements for linear regression
true_theta_slider = mo.ui.slider(
start =-2,
stop =2,
value=0.5,
step=0.1,
label="True slope (θ)"
)
noise_sigma_slider = mo.ui.slider(
start =0.1,
stop =2,
value=0.5,
step=0.1,
label="Noise level (σ)"
)
linear_sample_size_slider = mo.ui.slider(
start =10,
stop =200,
value=50,
step=10,
label="Sample size (n)"
)
linear_generate_button = mo.ui.button(label="Generate New Sample", kind="warn")
linear_controls = mo.hstack([
mo.vstack([true_theta_slider, noise_sigma_slider, linear_sample_size_slider]),
linear_generate_button
], justify="space-between")
return (
linear_controls,
linear_generate_button,
linear_sample_size_slider,
noise_sigma_slider,
true_theta_slider,
)
@app.cell(hide_code=True)
def _(mo):
# Interactive elements for likelihood vs probability demo
concept_dist_type = mo.ui.dropdown(
options=["Normal", "Bernoulli", "Poisson"],
value="Normal",
label="Distribution"
)
# Replace buttons with a simple dropdown selector
perspective_selector = mo.ui.dropdown(
options=["Probability Perspective", "Likelihood Perspective"],
value="Probability Perspective",
label="View"
)
concept_controls = mo.vstack([
mo.hstack([concept_dist_type, perspective_selector])
])
return concept_controls, concept_dist_type, perspective_selector
if __name__ == "__main__":
app.run()
|