marimo-learn / python /007_advanced_collections.py
Akshay Agrawal
capitalization
731f48e
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# ]
# ///
import marimo
__generated_with = "0.10.19"
app = marimo.App()
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
# 🔄 Advanced collections
This tutorials hows advanced patterns for working with collections.
## Lists of dictionaries
A common pattern in data handling is working with lists of dictionaries:
this is helpful for representing structured data like records or entries.
"""
)
return
@app.cell
def _():
# Sample data: List of user records
users_data = [
{"id": 1, "name": "Alice", "skills": ["Python", "SQL"]},
{"id": 2, "name": "Bob", "skills": ["JavaScript", "HTML"]},
{"id": 3, "name": "Charlie", "skills": ["Python", "Java"]}
]
return (users_data,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
Let's explore common operations on structured data.
**Try it!** Try modifying the `users_data` above and see how the results
change!
"""
)
return
@app.cell
def _(users_data):
# Finding users with specific skills
python_users = [
user["name"] for user in users_data if "Python" in user["skills"]
]
print("Python developers:", python_users)
return (python_users,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
## Nested data structures
Python collections can be nested in various ways to represent complex data:
"""
)
return
@app.cell
def _():
# Complex nested structure
project_data = {
"web_app": {
"frontend": ["HTML", "CSS", "React"],
"backend": {
"languages": ["Python", "Node.js"],
"databases": ["MongoDB", "PostgreSQL"]
}
},
"mobile_app": {
"platforms": ["iOS", "Android"],
"technologies": {
"iOS": ["Swift", "SwiftUI"],
"Android": ["Kotlin", "Jetpack Compose"]
}
}
}
return (project_data,)
@app.cell
def _(project_data):
# Nested data accessing
backend_langs = project_data["web_app"]["backend"]["languages"]
print("Backend languages:", backend_langs)
ios_tech = project_data["mobile_app"]["technologies"]["iOS"]
print("iOS technologies:", ios_tech)
return backend_langs, ios_tech
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
### Example: data transformation
Let's explore how to transform and reshape collection data:
"""
)
return
@app.cell
def _():
# Data-sample for transformation
sales_data = [
{"date": "2024-01", "product": "A", "units": 100},
{"date": "2024-01", "product": "B", "units": 150},
{"date": "2024-02", "product": "A", "units": 120},
{"date": "2024-02", "product": "B", "units": 130}
]
return (sales_data,)
@app.cell
def _(sales_data):
# Transform to product-based structure
product_sales = {}
for sale in sales_data:
if sale["product"] not in product_sales:
product_sales[sale["product"]] = []
product_sales[sale["product"]].append({
"date": sale["date"],
"units": sale["units"]
})
print("Sales by product:", product_sales)
return product_sales, sale
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
## More collection utilities
Python's `collections` module provides specialized container datatypes:
```python
from collections import defaultdict, Counter, deque
# defaultdict - dictionary with default factory
word_count = defaultdict(int)
for word in words:
word_count[word] += 1
# Counter - count hashable objects
colors = Counter(['red', 'blue', 'red', 'green', 'blue', 'blue'])
print(colors.most_common(2)) # Top 2 most common colors
# deque - double-ended queue
history = deque(maxlen=10) # Only keeps last 10 items
history.append(item)
```
"""
)
return
@app.cell
def _():
from collections import Counter
# Example using Counter
programming_languages = [
"Python", "JavaScript", "Python", "Java",
"Python", "JavaScript", "C++", "Java"
]
language_count = Counter(programming_languages)
print("Language frequency:", dict(language_count))
print("Most common language:", language_count.most_common(1))
return Counter, language_count, programming_languages
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
## Next steps
For a reference on the `collections` module, see [the official Python
docs](https://docs.python.org/3/library/collections.html).
"""
)
return
@app.cell
def _():
import marimo as mo
return (mo,)
if __name__ == "__main__":
app.run()