Spaces:
Running
Running
# /// script | |
# requires-python = ">=3.10" | |
# dependencies = [ | |
# "marimo", | |
# ] | |
# /// | |
import marimo | |
__generated_with = "0.10.19" | |
app = marimo.App() | |
def _(mo): | |
mo.md( | |
""" | |
# 🔄 Advanced collections | |
This tutorials hows advanced patterns for working with collections. | |
## Lists of dictionaries | |
A common pattern in data handling is working with lists of dictionaries: | |
this is helpful for representing structured data like records or entries. | |
""" | |
) | |
return | |
def _(): | |
# Sample data: List of user records | |
users_data = [ | |
{"id": 1, "name": "Alice", "skills": ["Python", "SQL"]}, | |
{"id": 2, "name": "Bob", "skills": ["JavaScript", "HTML"]}, | |
{"id": 3, "name": "Charlie", "skills": ["Python", "Java"]} | |
] | |
return (users_data,) | |
def _(mo): | |
mo.md( | |
""" | |
Let's explore common operations on structured data. | |
**Try it!** Try modifying the `users_data` above and see how the results | |
change! | |
""" | |
) | |
return | |
def _(users_data): | |
# Finding users with specific skills | |
python_users = [ | |
user["name"] for user in users_data if "Python" in user["skills"] | |
] | |
print("Python developers:", python_users) | |
return (python_users,) | |
def _(mo): | |
mo.md( | |
""" | |
## Nested data structures | |
Python collections can be nested in various ways to represent complex data: | |
""" | |
) | |
return | |
def _(): | |
# Complex nested structure | |
project_data = { | |
"web_app": { | |
"frontend": ["HTML", "CSS", "React"], | |
"backend": { | |
"languages": ["Python", "Node.js"], | |
"databases": ["MongoDB", "PostgreSQL"] | |
} | |
}, | |
"mobile_app": { | |
"platforms": ["iOS", "Android"], | |
"technologies": { | |
"iOS": ["Swift", "SwiftUI"], | |
"Android": ["Kotlin", "Jetpack Compose"] | |
} | |
} | |
} | |
return (project_data,) | |
def _(project_data): | |
# Nested data accessing | |
backend_langs = project_data["web_app"]["backend"]["languages"] | |
print("Backend languages:", backend_langs) | |
ios_tech = project_data["mobile_app"]["technologies"]["iOS"] | |
print("iOS technologies:", ios_tech) | |
return backend_langs, ios_tech | |
def _(mo): | |
mo.md( | |
""" | |
### Example: data transformation | |
Let's explore how to transform and reshape collection data: | |
""" | |
) | |
return | |
def _(): | |
# Data-sample for transformation | |
sales_data = [ | |
{"date": "2024-01", "product": "A", "units": 100}, | |
{"date": "2024-01", "product": "B", "units": 150}, | |
{"date": "2024-02", "product": "A", "units": 120}, | |
{"date": "2024-02", "product": "B", "units": 130} | |
] | |
return (sales_data,) | |
def _(sales_data): | |
# Transform to product-based structure | |
product_sales = {} | |
for sale in sales_data: | |
if sale["product"] not in product_sales: | |
product_sales[sale["product"]] = [] | |
product_sales[sale["product"]].append({ | |
"date": sale["date"], | |
"units": sale["units"] | |
}) | |
print("Sales by product:", product_sales) | |
return product_sales, sale | |
def _(mo): | |
mo.md( | |
""" | |
## More collection utilities | |
Python's `collections` module provides specialized container datatypes: | |
```python | |
from collections import defaultdict, Counter, deque | |
# defaultdict - dictionary with default factory | |
word_count = defaultdict(int) | |
for word in words: | |
word_count[word] += 1 | |
# Counter - count hashable objects | |
colors = Counter(['red', 'blue', 'red', 'green', 'blue', 'blue']) | |
print(colors.most_common(2)) # Top 2 most common colors | |
# deque - double-ended queue | |
history = deque(maxlen=10) # Only keeps last 10 items | |
history.append(item) | |
``` | |
""" | |
) | |
return | |
def _(): | |
from collections import Counter | |
# Example using Counter | |
programming_languages = [ | |
"Python", "JavaScript", "Python", "Java", | |
"Python", "JavaScript", "C++", "Java" | |
] | |
language_count = Counter(programming_languages) | |
print("Language frequency:", dict(language_count)) | |
print("Most common language:", language_count.most_common(1)) | |
return Counter, language_count, programming_languages | |
def _(mo): | |
mo.md( | |
""" | |
## Next steps | |
For a reference on the `collections` module, see [the official Python | |
docs](https://docs.python.org/3/library/collections.html). | |
""" | |
) | |
return | |
def _(): | |
import marimo as mo | |
return (mo,) | |
if __name__ == "__main__": | |
app.run() | |