Spaces:
Running
Running
File size: 5,003 Bytes
554679f cb50f45 554679f 731f48e 554679f cb50f45 554679f cb50f45 554679f cb50f45 554679f cb50f45 554679f cb50f45 731f48e 554679f cb50f45 554679f cb50f45 554679f cb50f45 554679f cb50f45 554679f cb50f45 554679f cb50f45 554679f cb50f45 554679f cb50f45 554679f cb50f45 554679f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# ]
# ///
import marimo
__generated_with = "0.10.19"
app = marimo.App()
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
# 🔄 Advanced collections
This tutorials hows advanced patterns for working with collections.
## Lists of dictionaries
A common pattern in data handling is working with lists of dictionaries:
this is helpful for representing structured data like records or entries.
"""
)
return
@app.cell
def _():
# Sample data: List of user records
users_data = [
{"id": 1, "name": "Alice", "skills": ["Python", "SQL"]},
{"id": 2, "name": "Bob", "skills": ["JavaScript", "HTML"]},
{"id": 3, "name": "Charlie", "skills": ["Python", "Java"]}
]
return (users_data,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
Let's explore common operations on structured data.
**Try it!** Try modifying the `users_data` above and see how the results
change!
"""
)
return
@app.cell
def _(users_data):
# Finding users with specific skills
python_users = [
user["name"] for user in users_data if "Python" in user["skills"]
]
print("Python developers:", python_users)
return (python_users,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
## Nested data structures
Python collections can be nested in various ways to represent complex data:
"""
)
return
@app.cell
def _():
# Complex nested structure
project_data = {
"web_app": {
"frontend": ["HTML", "CSS", "React"],
"backend": {
"languages": ["Python", "Node.js"],
"databases": ["MongoDB", "PostgreSQL"]
}
},
"mobile_app": {
"platforms": ["iOS", "Android"],
"technologies": {
"iOS": ["Swift", "SwiftUI"],
"Android": ["Kotlin", "Jetpack Compose"]
}
}
}
return (project_data,)
@app.cell
def _(project_data):
# Nested data accessing
backend_langs = project_data["web_app"]["backend"]["languages"]
print("Backend languages:", backend_langs)
ios_tech = project_data["mobile_app"]["technologies"]["iOS"]
print("iOS technologies:", ios_tech)
return backend_langs, ios_tech
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
### Example: data transformation
Let's explore how to transform and reshape collection data:
"""
)
return
@app.cell
def _():
# Data-sample for transformation
sales_data = [
{"date": "2024-01", "product": "A", "units": 100},
{"date": "2024-01", "product": "B", "units": 150},
{"date": "2024-02", "product": "A", "units": 120},
{"date": "2024-02", "product": "B", "units": 130}
]
return (sales_data,)
@app.cell
def _(sales_data):
# Transform to product-based structure
product_sales = {}
for sale in sales_data:
if sale["product"] not in product_sales:
product_sales[sale["product"]] = []
product_sales[sale["product"]].append({
"date": sale["date"],
"units": sale["units"]
})
print("Sales by product:", product_sales)
return product_sales, sale
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
## More collection utilities
Python's `collections` module provides specialized container datatypes:
```python
from collections import defaultdict, Counter, deque
# defaultdict - dictionary with default factory
word_count = defaultdict(int)
for word in words:
word_count[word] += 1
# Counter - count hashable objects
colors = Counter(['red', 'blue', 'red', 'green', 'blue', 'blue'])
print(colors.most_common(2)) # Top 2 most common colors
# deque - double-ended queue
history = deque(maxlen=10) # Only keeps last 10 items
history.append(item)
```
"""
)
return
@app.cell
def _():
from collections import Counter
# Example using Counter
programming_languages = [
"Python", "JavaScript", "Python", "Java",
"Python", "JavaScript", "C++", "Java"
]
language_count = Counter(programming_languages)
print("Language frequency:", dict(language_count))
print("Most common language:", language_count.most_common(1))
return Counter, language_count, programming_languages
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
## Next steps
For a reference on the `collections` module, see [the official Python
docs](https://docs.python.org/3/library/collections.html).
"""
)
return
@app.cell
def _():
import marimo as mo
return (mo,)
if __name__ == "__main__":
app.run()
|