File size: 5,003 Bytes
554679f
 
 
 
 
 
 
 
 
cb50f45
554679f
 
 
 
 
 
 
731f48e
554679f
cb50f45
554679f
cb50f45
 
 
 
554679f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb50f45
 
 
554679f
 
 
 
 
 
 
 
cb50f45
 
 
554679f
 
 
 
 
 
cb50f45
 
731f48e
554679f
 
cb50f45
 
554679f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb50f45
 
 
554679f
 
cb50f45
 
554679f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb50f45
 
 
554679f
cb50f45
554679f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb50f45
 
554679f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb50f45
 
 
554679f
cb50f45
 
 
 
 
554679f
 
cb50f45
 
 
 
554679f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "marimo",
# ]
# ///

import marimo

__generated_with = "0.10.19"
app = marimo.App()


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        """
        # 🔄 Advanced collections

        This tutorials hows advanced patterns for working with collections.

        ## Lists of dictionaries

        A common pattern in data handling is working with lists of dictionaries:
        this is helpful for representing structured data like records or entries.
        """
    )
    return


@app.cell
def _():
    # Sample data: List of user records
    users_data = [
        {"id": 1, "name": "Alice", "skills": ["Python", "SQL"]},
        {"id": 2, "name": "Bob", "skills": ["JavaScript", "HTML"]},
        {"id": 3, "name": "Charlie", "skills": ["Python", "Java"]}
    ]
    return (users_data,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        """
        Let's explore common operations on structured data.

        **Try it!** Try modifying the `users_data` above and see how the results
        change!
        """
    )
    return


@app.cell
def _(users_data):
    # Finding users with specific skills
    python_users = [
        user["name"] for user in users_data if "Python" in user["skills"]
    ]
    print("Python developers:", python_users)
    return (python_users,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        """
        ## Nested data structures

        Python collections can be nested in various ways to represent complex data:
        """
    )
    return


@app.cell
def _():
    # Complex nested structure
    project_data = {
        "web_app": {
            "frontend": ["HTML", "CSS", "React"],
            "backend": {
                "languages": ["Python", "Node.js"],
                "databases": ["MongoDB", "PostgreSQL"]
            }
        },
        "mobile_app": {
            "platforms": ["iOS", "Android"],
            "technologies": {
                "iOS": ["Swift", "SwiftUI"],
                "Android": ["Kotlin", "Jetpack Compose"]
            }
        }
    }
    return (project_data,)


@app.cell
def _(project_data):
    # Nested data accessing
    backend_langs = project_data["web_app"]["backend"]["languages"]
    print("Backend languages:", backend_langs)

    ios_tech = project_data["mobile_app"]["technologies"]["iOS"]
    print("iOS technologies:", ios_tech)
    return backend_langs, ios_tech


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        """
        ### Example: data transformation

        Let's explore how to transform and reshape collection data:
        """
    )
    return


@app.cell
def _():
    # Data-sample for transformation
    sales_data = [
        {"date": "2024-01", "product": "A", "units": 100},
        {"date": "2024-01", "product": "B", "units": 150},
        {"date": "2024-02", "product": "A", "units": 120},
        {"date": "2024-02", "product": "B", "units": 130}
    ]
    return (sales_data,)


@app.cell
def _(sales_data):
    # Transform to product-based structure
    product_sales = {}
    for sale in sales_data:
        if sale["product"] not in product_sales:
            product_sales[sale["product"]] = []
        product_sales[sale["product"]].append({
            "date": sale["date"],
            "units": sale["units"]
        })

    print("Sales by product:", product_sales)
    return product_sales, sale


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        """
        ## More collection utilities

        Python's `collections` module provides specialized container datatypes:

        ```python
        from collections import defaultdict, Counter, deque

        # defaultdict - dictionary with default factory
        word_count = defaultdict(int)
        for word in words:
            word_count[word] += 1

        # Counter - count hashable objects
        colors = Counter(['red', 'blue', 'red', 'green', 'blue', 'blue'])
        print(colors.most_common(2))  # Top 2 most common colors

        # deque - double-ended queue
        history = deque(maxlen=10)  # Only keeps last 10 items
        history.append(item)
        ```
        """
    )
    return


@app.cell
def _():
    from collections import Counter

    # Example using Counter
    programming_languages = [
        "Python", "JavaScript", "Python", "Java", 
        "Python", "JavaScript", "C++", "Java"
    ]

    language_count = Counter(programming_languages)
    print("Language frequency:", dict(language_count))
    print("Most common language:", language_count.most_common(1))
    return Counter, language_count, programming_languages


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        """
        ## Next steps

        For a reference on the `collections` module, see [the official Python 
        docs](https://docs.python.org/3/library/collections.html).
        """
    )
    return


@app.cell
def _():
    import marimo as mo
    return (mo,)


if __name__ == "__main__":
    app.run()