Haleshot commited on
Commit
0f954b6
·
unverified ·
1 Parent(s): c400c65
Files changed (1) hide show
  1. probability/11_expectation.py +3 -14
probability/11_expectation.py CHANGED
@@ -90,7 +90,7 @@ def _(np, plt):
90
  xy=(exp_num_rolls, exp_running_avg[-1]), xytext=(exp_num_rolls/3, 4),
91
  arrowprops=dict(facecolor='black', shrink=0.05, width=1.5))
92
 
93
- plt.gca() # Return the current axes to ensure proper display
94
  return exp_die_rolls, exp_num_rolls, exp_running_avg
95
 
96
 
@@ -506,16 +506,12 @@ def _(
506
  # Plot the expected value function
507
  dist_ax.plot(param_values, expected_values, 'b-', linewidth=2, label="Expected Value Function")
508
 
509
- # Mark the current parameter value
510
  dist_ax.plot(current_param, current_expected, 'ro', markersize=10, label=f"Current Value: E[X] = {current_expected}")
511
 
512
- # Add a horizontal line from y-axis to the current point
513
  dist_ax.hlines(current_expected, param_values[0], current_param, colors='r', linestyles='dashed')
514
 
515
- # Add a vertical line from x-axis to the current point
516
  dist_ax.vlines(current_param, 0, current_expected, colors='r', linestyles='dashed')
517
 
518
- # Add shaded area under the curve
519
  dist_ax.fill_between(param_values, 0, expected_values, alpha=0.2, color='blue')
520
 
521
  dist_ax.set_xlabel(x_label, fontsize=12)
@@ -531,7 +527,6 @@ def _(
531
  dist_ax.text(0.02, 0.95, formula, transform=dist_ax.transAxes, fontsize=12,
532
  verticalalignment='top', bbox=dist_props)
533
 
534
- # Set reasonable y-axis limits based on the distribution
535
  if dist_selection.value == "geometric":
536
  max_y = min(50, 2/max(0.01, param_values[0]))
537
  dist_ax.set_ylim(0, max_y)
@@ -540,7 +535,6 @@ def _(
540
  else:
541
  dist_ax.set_ylim(0, max(expected_values) * 1.1)
542
 
543
- # Add annotations for current value
544
  annotation_x = current_param + (param_values[-1] - param_values[0]) * 0.05
545
  annotation_y = current_expected
546
 
@@ -609,7 +603,6 @@ def _(np, plt, stats):
609
  skew_expected = skew_n * skew_p
610
  skew_expected_rounded = round(skew_expected, 2)
611
 
612
- # Create the plot
613
  skew_fig, skew_ax = plt.subplots(figsize=(10, 5))
614
  skew_ax.bar(skew_x_values, skew_pmf_values, alpha=0.7, width=0.4)
615
 
@@ -619,15 +612,12 @@ def _(np, plt, stats):
619
  skew_ax.axvline(x=skew_expected, color='r', linestyle='--', linewidth=2,
620
  label=f'Expected Value = {skew_expected_rounded} (Mean)')
621
 
622
- # Add annotations to highlight the difference
623
  skew_ax.annotate('Mode', xy=(skew_mode, 0.05), xytext=(skew_mode-2.0, 0.1),
624
  arrowprops=dict(facecolor='green', shrink=0.05, width=1.5), color='green')
625
  skew_ax.annotate('Expected Value', xy=(skew_expected, 0.05), xytext=(skew_expected+1, 0.15),
626
  arrowprops=dict(facecolor='red', shrink=0.05, width=1.5), color='red')
627
 
628
- # Highlight the difference between mode and expected value
629
  if skew_mode != int(skew_expected):
630
- # Add a shaded region between mode and expected value
631
  min_x = min(skew_mode, skew_expected)
632
  max_x = max(skew_mode, skew_expected)
633
  skew_ax.axvspan(min_x, max_x, alpha=0.2, color='purple')
@@ -685,9 +675,8 @@ def _(mo):
685
 
686
  1. **Finance**: Expected return on investments, option pricing
687
  2. **Insurance**: Setting premiums based on expected claims
688
- 3. **Gaming**: Calculating the expected winnings in games of chance
689
- 4. **Machine Learning**: Loss function minimization
690
- 5. **Operations Research**: Decision making under uncertainty
691
  """
692
  )
693
  return
 
90
  xy=(exp_num_rolls, exp_running_avg[-1]), xytext=(exp_num_rolls/3, 4),
91
  arrowprops=dict(facecolor='black', shrink=0.05, width=1.5))
92
 
93
+ plt.gca()
94
  return exp_die_rolls, exp_num_rolls, exp_running_avg
95
 
96
 
 
506
  # Plot the expected value function
507
  dist_ax.plot(param_values, expected_values, 'b-', linewidth=2, label="Expected Value Function")
508
 
 
509
  dist_ax.plot(current_param, current_expected, 'ro', markersize=10, label=f"Current Value: E[X] = {current_expected}")
510
 
 
511
  dist_ax.hlines(current_expected, param_values[0], current_param, colors='r', linestyles='dashed')
512
 
 
513
  dist_ax.vlines(current_param, 0, current_expected, colors='r', linestyles='dashed')
514
 
 
515
  dist_ax.fill_between(param_values, 0, expected_values, alpha=0.2, color='blue')
516
 
517
  dist_ax.set_xlabel(x_label, fontsize=12)
 
527
  dist_ax.text(0.02, 0.95, formula, transform=dist_ax.transAxes, fontsize=12,
528
  verticalalignment='top', bbox=dist_props)
529
 
 
530
  if dist_selection.value == "geometric":
531
  max_y = min(50, 2/max(0.01, param_values[0]))
532
  dist_ax.set_ylim(0, max_y)
 
535
  else:
536
  dist_ax.set_ylim(0, max(expected_values) * 1.1)
537
 
 
538
  annotation_x = current_param + (param_values[-1] - param_values[0]) * 0.05
539
  annotation_y = current_expected
540
 
 
603
  skew_expected = skew_n * skew_p
604
  skew_expected_rounded = round(skew_expected, 2)
605
 
 
606
  skew_fig, skew_ax = plt.subplots(figsize=(10, 5))
607
  skew_ax.bar(skew_x_values, skew_pmf_values, alpha=0.7, width=0.4)
608
 
 
612
  skew_ax.axvline(x=skew_expected, color='r', linestyle='--', linewidth=2,
613
  label=f'Expected Value = {skew_expected_rounded} (Mean)')
614
 
 
615
  skew_ax.annotate('Mode', xy=(skew_mode, 0.05), xytext=(skew_mode-2.0, 0.1),
616
  arrowprops=dict(facecolor='green', shrink=0.05, width=1.5), color='green')
617
  skew_ax.annotate('Expected Value', xy=(skew_expected, 0.05), xytext=(skew_expected+1, 0.15),
618
  arrowprops=dict(facecolor='red', shrink=0.05, width=1.5), color='red')
619
 
 
620
  if skew_mode != int(skew_expected):
 
621
  min_x = min(skew_mode, skew_expected)
622
  max_x = max(skew_mode, skew_expected)
623
  skew_ax.axvspan(min_x, max_x, alpha=0.2, color='purple')
 
675
 
676
  1. **Finance**: Expected return on investments, option pricing
677
  2. **Insurance**: Setting premiums based on expected claims
678
+ 3. **Machine Learning**: Loss function minimization
679
+ 4. **Operations Research**: Decision making under uncertainty
 
680
  """
681
  )
682
  return