akshayka commited on
Commit
a50dbac
·
1 Parent(s): 53609e5

minor edits

Browse files
probability/04_conditional_probability.py CHANGED
@@ -10,7 +10,7 @@
10
 
11
  import marimo
12
 
13
- __generated_with = "0.11.2"
14
  app = marimo.App(width="medium", app_title="Conditional Probability")
15
 
16
 
@@ -20,20 +20,14 @@ def _():
20
  return (mo,)
21
 
22
 
23
- @app.cell
24
- def _():
25
- import matplotlib.pyplot as plt
26
- from matplotlib_venn import venn3
27
- import numpy as np
28
- return np, plt, venn3
29
-
30
-
31
  @app.cell(hide_code=True)
32
  def _(mo):
33
  mo.md(
34
  r"""
35
  # Conditional Probability
36
 
 
 
37
  In probability theory, we often want to update our beliefs when we receive new information.
38
  Conditional probability helps us formalize this process by calculating "_what is the chance of
39
  event $E$ happening given that we have already observed some other event $F$?_"[<sup>1</sup>](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/cond_prob/)
@@ -54,26 +48,34 @@ def _(mo):
54
  r"""
55
  ## Definition of Conditional Probability
56
 
57
- The probability of event $E$ given that event $F$ has occurred is denoted as $P(E|F)$ and is defined as:
58
 
59
- $$P(E|F) = \frac{P(E \cap F)}{P(F)}$$
60
 
61
  This formula tells us that the conditional probability is the probability of both events occurring
62
  divided by the probability of the conditioning event.
63
 
64
- Let's understand this with a function that computes conditional probability:
65
  """
66
  )
67
  return
68
 
69
 
 
 
 
 
 
 
 
 
70
  @app.cell(hide_code=True)
71
  def _(mo, plt, venn3):
72
  # Create figure with square boundaries
73
- plt.figure(figsize=(10, 5))
74
 
75
  # Draw square sample space first
76
- rect = plt.Rectangle((-2, -2), 4, 4, fill=False, color='gray', linestyle='--')
77
  plt.gca().add_patch(rect)
78
 
79
  # Set the axis limits to show the full rectangle
@@ -83,35 +85,38 @@ def _(mo, plt, venn3):
83
  # Create Venn diagram showing E and F
84
  # For venn3, subsets order is: (100, 010, 110, 001, 101, 011, 111)
85
  # Representing: (A, B, AB, C, AC, BC, ABC)
86
- v = venn3(subsets=(30, 20, 10, 40, 0, 0, 0),
87
- set_labels=('E', 'F', 'Rest'))
88
 
89
  # Customize colors
90
  if v:
91
- for id in ['100', '010', '110', '001']:
92
  if v.get_patch_by_id(id):
93
- if id == '100':
94
- v.get_patch_by_id(id).set_color('#ffcccc') # Light red for E
95
- elif id == '010':
96
- v.get_patch_by_id(id).set_color('#ccffcc') # Light green for F
97
- elif id == '110':
98
- v.get_patch_by_id(id).set_color('#e6ffe6') # Lighter green for intersection
99
- elif id == '001':
100
- v.get_patch_by_id(id).set_color('white') # White for rest
101
-
102
- plt.title('Conditional Probability in Sample Space')
 
 
103
 
104
  # Remove ticks but keep the box visible
105
  plt.gca().set_yticks([])
106
  plt.gca().set_xticks([])
107
- plt.axis('on')
108
 
109
  # Add sample space annotation with arrow
110
- plt.annotate('Sample Space (100)',
111
- xy=(-1.5, 1.5),
112
- xytext=(-2.2, 2),
113
- bbox=dict(boxstyle='round,pad=0.5', fc='white', ec='gray'),
114
- arrowprops=dict(arrowstyle='->'))
 
 
115
 
116
  # Add explanation
117
  explanation = mo.md(r"""
@@ -125,17 +130,25 @@ def _(mo, plt, venn3):
125
  - Remaining cases: 40 (to complete sample space of 100)
126
 
127
  When we condition on $F$:
128
- $$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{10}{30} = \frac{1}{3} \approx 0.33$$
129
 
130
  This means: When we know $F$ has occurred (restricting ourselves to the green region),
131
  the probability of $E$ also occurring is $\frac{1}{3}$ - as 10 out of the 30 cases in the
132
  green region also belong to the red region.
133
  """)
134
 
135
- mo.hstack([plt.gcf(), explanation])
136
  return explanation, id, rect, v
137
 
138
 
 
 
 
 
 
 
 
 
139
  @app.cell
140
  def _():
141
  def conditional_probability(p_intersection, p_condition):
@@ -153,7 +166,7 @@ def _(conditional_probability):
153
  # Example 1: Rolling a die
154
  # E: Rolling an even number (2,4,6)
155
  # F: Rolling a number greater than 3 (4,5,6)
156
- p_even_given_greater_than_3 = conditional_probability(2/6, 3/6)
157
  print("Example 1: Rolling a die")
158
  print(f"P(Even | >3) = {p_even_given_greater_than_3}") # Should be 2/3
159
  return (p_even_given_greater_than_3,)
@@ -164,7 +177,7 @@ def _(conditional_probability):
164
  # Example 2: Cards
165
  # E: Drawing a Heart
166
  # F: Drawing a Face card (J,Q,K)
167
- p_heart_given_face = conditional_probability(3/52, 12/52)
168
  print("\nExample 2: Drawing cards")
169
  print(f"P(Heart | Face card) = {p_heart_given_face}") # Should be 1/4
170
  return (p_heart_given_face,)
@@ -226,10 +239,10 @@ def _(mo):
226
 
227
  | Rule | Original | Conditioned on $G$ |
228
  |------|----------|-------------------|
229
- | Axiom 1 | $0 \leq P(E) \leq 1$ | $0 \leq P(E\|G) \leq 1$ |
230
- | Axiom 2 | $P(S) = 1$ | $P(S\|G) = 1$ |
231
- | Axiom 3* | $P(E \cup F) = P(E) + P(F)$ | $P(E \cup F\|G) = P(E\|G) + P(F\|G)$ |
232
- | Complement | $P(E^C) = 1 - P(E)$ | $P(E^C\|G) = 1 - P(E\|G)$ |
233
 
234
  *_For mutually exclusive events_
235
  """
@@ -243,12 +256,12 @@ def _(mo):
243
  r"""
244
  ## Multiple Conditions
245
 
246
- We can condition on multiple events. The notation $P(E|F,G)$ means "_the probability of $E$
247
  occurring, given that both $F$ and $G$ have occurred._"
248
 
249
  The conditional probability formula still holds in the universe where $G$ has occurred:
250
 
251
- $$P(E|F,G) = \frac{P(E \cap F|G)}{P(F|G)}$$
252
 
253
  This is a powerful extension that allows us to update our probabilities as we receive
254
  multiple pieces of information.
@@ -259,12 +272,16 @@ def _(mo):
259
 
260
  @app.cell
261
  def _():
262
- def multiple_conditional_probability(p_intersection_all, p_intersection_conditions, p_condition):
 
 
263
  """Calculate P(E|F,G) = P(E∩F|G)/P(F|G) = P(E∩F∩G)/P(F∩G)"""
264
  if p_condition == 0:
265
  raise ValueError("Cannot condition on an impossible event")
266
  if p_intersection_conditions == 0:
267
- raise ValueError("Cannot condition on an impossible combination of events")
 
 
268
  if p_intersection_all > p_intersection_conditions:
269
  raise ValueError("P(E∩F∩G) cannot be greater than P(F∩G)")
270
 
@@ -284,7 +301,9 @@ def _(multiple_conditional_probability):
284
 
285
  p_admit_given_both = multiple_conditional_probability(0.15, 0.25, 0.25)
286
  print("College Admissions Example:")
287
- print(f"P(Admitted | High GPA, Good Scores) = {p_admit_given_both}") # Should be 0.6
 
 
288
 
289
  # Error case: impossible condition
290
  try:
@@ -335,7 +354,7 @@ def _(mo):
335
  You've learned:
336
 
337
  - How conditional probability updates our beliefs with new information
338
- - The formula $P(E|F) = P(E \cap F)/P(F)$ and its intuition
339
  - How probability rules work in conditional universes
340
  - How to handle multiple conditions
341
 
 
10
 
11
  import marimo
12
 
13
+ __generated_with = "0.11.4"
14
  app = marimo.App(width="medium", app_title="Conditional Probability")
15
 
16
 
 
20
  return (mo,)
21
 
22
 
 
 
 
 
 
 
 
 
23
  @app.cell(hide_code=True)
24
  def _(mo):
25
  mo.md(
26
  r"""
27
  # Conditional Probability
28
 
29
+ _This notebook is a computational companion to the book ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/cond_prob/), by Stanford professor Chris Piech._
30
+
31
  In probability theory, we often want to update our beliefs when we receive new information.
32
  Conditional probability helps us formalize this process by calculating "_what is the chance of
33
  event $E$ happening given that we have already observed some other event $F$?_"[<sup>1</sup>](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/cond_prob/)
 
48
  r"""
49
  ## Definition of Conditional Probability
50
 
51
+ The probability of event $E$ given that event $F$ has occurred is denoted as $P(E \mid F)$ and is defined as:
52
 
53
+ $$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$
54
 
55
  This formula tells us that the conditional probability is the probability of both events occurring
56
  divided by the probability of the conditioning event.
57
 
58
+ Let's start with a visual example.
59
  """
60
  )
61
  return
62
 
63
 
64
+ @app.cell
65
+ def _():
66
+ import matplotlib.pyplot as plt
67
+ from matplotlib_venn import venn3
68
+ import numpy as np
69
+ return np, plt, venn3
70
+
71
+
72
  @app.cell(hide_code=True)
73
  def _(mo, plt, venn3):
74
  # Create figure with square boundaries
75
+ plt.figure(figsize=(10, 3))
76
 
77
  # Draw square sample space first
78
+ rect = plt.Rectangle((-2, -2), 4, 4, fill=False, color="gray", linestyle="--")
79
  plt.gca().add_patch(rect)
80
 
81
  # Set the axis limits to show the full rectangle
 
85
  # Create Venn diagram showing E and F
86
  # For venn3, subsets order is: (100, 010, 110, 001, 101, 011, 111)
87
  # Representing: (A, B, AB, C, AC, BC, ABC)
88
+ v = venn3(subsets=(30, 20, 10, 40, 0, 0, 0), set_labels=("E", "F", "Rest"))
 
89
 
90
  # Customize colors
91
  if v:
92
+ for id in ["100", "010", "110", "001"]:
93
  if v.get_patch_by_id(id):
94
+ if id == "100":
95
+ v.get_patch_by_id(id).set_color("#ffcccc") # Light red for E
96
+ elif id == "010":
97
+ v.get_patch_by_id(id).set_color("#ccffcc") # Light green for F
98
+ elif id == "110":
99
+ v.get_patch_by_id(id).set_color(
100
+ "#e6ffe6"
101
+ ) # Lighter green for intersection
102
+ elif id == "001":
103
+ v.get_patch_by_id(id).set_color("white") # White for rest
104
+
105
+ plt.title("Conditional Probability in Sample Space")
106
 
107
  # Remove ticks but keep the box visible
108
  plt.gca().set_yticks([])
109
  plt.gca().set_xticks([])
110
+ plt.axis("on")
111
 
112
  # Add sample space annotation with arrow
113
+ plt.annotate(
114
+ "Sample Space (100)",
115
+ xy=(-1.5, 1.5),
116
+ xytext=(-2.2, 2),
117
+ bbox=dict(boxstyle="round,pad=0.5", fc="white", ec="gray"),
118
+ arrowprops=dict(arrowstyle="->"),
119
+ )
120
 
121
  # Add explanation
122
  explanation = mo.md(r"""
 
130
  - Remaining cases: 40 (to complete sample space of 100)
131
 
132
  When we condition on $F$:
133
+ $$P(E \mid F) = \frac{P(E \cap F)}{P(F)} = \frac{10}{30} = \frac{1}{3} \approx 0.33$$
134
 
135
  This means: When we know $F$ has occurred (restricting ourselves to the green region),
136
  the probability of $E$ also occurring is $\frac{1}{3}$ - as 10 out of the 30 cases in the
137
  green region also belong to the red region.
138
  """)
139
 
140
+ mo.vstack([mo.center(plt.gcf()), explanation])
141
  return explanation, id, rect, v
142
 
143
 
144
+ @app.cell(hide_code=True)
145
+ def _(mo):
146
+ mo.md(
147
+ r"Next, here's a function that computes $P(E \mid F)$, given $P( E \cap F)$ and $P(F)$"
148
+ )
149
+ return
150
+
151
+
152
  @app.cell
153
  def _():
154
  def conditional_probability(p_intersection, p_condition):
 
166
  # Example 1: Rolling a die
167
  # E: Rolling an even number (2,4,6)
168
  # F: Rolling a number greater than 3 (4,5,6)
169
+ p_even_given_greater_than_3 = conditional_probability(2 / 6, 3 / 6)
170
  print("Example 1: Rolling a die")
171
  print(f"P(Even | >3) = {p_even_given_greater_than_3}") # Should be 2/3
172
  return (p_even_given_greater_than_3,)
 
177
  # Example 2: Cards
178
  # E: Drawing a Heart
179
  # F: Drawing a Face card (J,Q,K)
180
+ p_heart_given_face = conditional_probability(3 / 52, 12 / 52)
181
  print("\nExample 2: Drawing cards")
182
  print(f"P(Heart | Face card) = {p_heart_given_face}") # Should be 1/4
183
  return (p_heart_given_face,)
 
239
 
240
  | Rule | Original | Conditioned on $G$ |
241
  |------|----------|-------------------|
242
+ | Axiom 1 | $0 \leq P(E) \leq 1$ | $0 \leq P(E \mid G) \leq 1$ |
243
+ | Axiom 2 | $P(S) = 1$ | $P(S \mid G) = 1$ |
244
+ | Axiom 3* | $P(E \cup F) = P(E) + P(F)$ | $P(E \cup F \mid G) = P(E \mid G) + P(F \mid G)$ |
245
+ | Complement | $P(E^C) = 1 - P(E)$ | $P(E^C \mid G) = 1 - P(E \mid G)$ |
246
 
247
  *_For mutually exclusive events_
248
  """
 
256
  r"""
257
  ## Multiple Conditions
258
 
259
+ We can condition on multiple events. The notation $P(E \mid F,G)$ means "_the probability of $E$
260
  occurring, given that both $F$ and $G$ have occurred._"
261
 
262
  The conditional probability formula still holds in the universe where $G$ has occurred:
263
 
264
+ $$P(E \mid F,G) = \frac{P(E \cap F \mid G)}{P(F \mid G)}$$
265
 
266
  This is a powerful extension that allows us to update our probabilities as we receive
267
  multiple pieces of information.
 
272
 
273
  @app.cell
274
  def _():
275
+ def multiple_conditional_probability(
276
+ p_intersection_all, p_intersection_conditions, p_condition
277
+ ):
278
  """Calculate P(E|F,G) = P(E∩F|G)/P(F|G) = P(E∩F∩G)/P(F∩G)"""
279
  if p_condition == 0:
280
  raise ValueError("Cannot condition on an impossible event")
281
  if p_intersection_conditions == 0:
282
+ raise ValueError(
283
+ "Cannot condition on an impossible combination of events"
284
+ )
285
  if p_intersection_all > p_intersection_conditions:
286
  raise ValueError("P(E∩F∩G) cannot be greater than P(F∩G)")
287
 
 
301
 
302
  p_admit_given_both = multiple_conditional_probability(0.15, 0.25, 0.25)
303
  print("College Admissions Example:")
304
+ print(
305
+ f"P(Admitted | High GPA, Good Scores) = {p_admit_given_both}"
306
+ ) # Should be 0.6
307
 
308
  # Error case: impossible condition
309
  try:
 
354
  You've learned:
355
 
356
  - How conditional probability updates our beliefs with new information
357
+ - The formula $P(E \mid F) = P(E \cap F)/P(F)$ and its intuition
358
  - How probability rules work in conditional universes
359
  - How to handle multiple conditions
360