Haleshot commited on
Commit
e4a091e
·
unverified ·
1 Parent(s): 17727c5

fixes: width = `medium` & line spacing

Browse files
probability/03_probability_of_or.py CHANGED
@@ -10,7 +10,7 @@
10
  import marimo
11
 
12
  __generated_with = "0.11.2"
13
- app = marimo.App()
14
 
15
 
16
  @app.cell
@@ -141,6 +141,7 @@ def _(mo):
141
  Why subtract $P(E \cap F)$? Because when we add $P(E)$ and $P(F)$, we count the overlap twice!
142
 
143
  For example, consider calculating $P(\text{prime or even})$ when rolling a die:
 
144
  - Prime numbers: {2, 3, 5}
145
  - Even numbers: {2, 4, 6}
146
  - The number 2 is counted twice unless we subtract its probability
@@ -235,7 +236,9 @@ def _(event_type, mo, plt, venn2):
235
  ### Mutually Exclusive Events
236
 
237
  $P(\text{Odd}) = \frac{3}{6} = 0.5$
 
238
  $P(\text{Even}) = \frac{3}{6} = 0.5$
 
239
  $P(\text{Odd} \cap \text{Even}) = 0$
240
 
241
  $P(\text{Odd} \cup \text{Even}) = P(\text{Odd}) + P(\text{Even}) = 1$
@@ -251,7 +254,9 @@ def _(event_type, mo, plt, venn2):
251
  ### Non-Mutually Exclusive Events
252
 
253
  $P(\text{Prime}) = \frac{3}{6} = 0.5$ (2,3,5)
 
254
  $P(\text{Even}) = \frac{3}{6} = 0.5$ (2,4,6)
 
255
  $P(\text{Prime} \cap \text{Even}) = \frac{1}{6}$ (2)
256
 
257
  $P(\text{Prime} \cup \text{Even}) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}$
@@ -267,7 +272,9 @@ def _(event_type, mo, plt, venn2):
267
  ### Complex Event Interaction
268
 
269
  $P(x < 3) = \frac{2}{6}$ (1,2)
 
270
  $P(\text{Even}) = \frac{3}{6}$ (2,4,6)
 
271
  $P(x < 3 \cap \text{Even}) = \frac{1}{6}$ (2)
272
 
273
  $P(x < 3 \cup \text{Even}) = \frac{2}{6} + \frac{3}{6} - \frac{1}{6} = \frac{4}{6}$
 
10
  import marimo
11
 
12
  __generated_with = "0.11.2"
13
+ app = marimo.App(width="medium")
14
 
15
 
16
  @app.cell
 
141
  Why subtract $P(E \cap F)$? Because when we add $P(E)$ and $P(F)$, we count the overlap twice!
142
 
143
  For example, consider calculating $P(\text{prime or even})$ when rolling a die:
144
+
145
  - Prime numbers: {2, 3, 5}
146
  - Even numbers: {2, 4, 6}
147
  - The number 2 is counted twice unless we subtract its probability
 
236
  ### Mutually Exclusive Events
237
 
238
  $P(\text{Odd}) = \frac{3}{6} = 0.5$
239
+
240
  $P(\text{Even}) = \frac{3}{6} = 0.5$
241
+
242
  $P(\text{Odd} \cap \text{Even}) = 0$
243
 
244
  $P(\text{Odd} \cup \text{Even}) = P(\text{Odd}) + P(\text{Even}) = 1$
 
254
  ### Non-Mutually Exclusive Events
255
 
256
  $P(\text{Prime}) = \frac{3}{6} = 0.5$ (2,3,5)
257
+
258
  $P(\text{Even}) = \frac{3}{6} = 0.5$ (2,4,6)
259
+
260
  $P(\text{Prime} \cap \text{Even}) = \frac{1}{6}$ (2)
261
 
262
  $P(\text{Prime} \cup \text{Even}) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}$
 
272
  ### Complex Event Interaction
273
 
274
  $P(x < 3) = \frac{2}{6}$ (1,2)
275
+
276
  $P(\text{Even}) = \frac{3}{6}$ (2,4,6)
277
+
278
  $P(x < 3 \cap \text{Even}) = \frac{1}{6}$ (2)
279
 
280
  $P(x < 3 \cup \text{Even}) = \frac{2}{6} + \frac{3}{6} - \frac{1}{6} = \frac{4}{6}$