Spaces:
Running
Running
fixes: width = `medium` & line spacing
Browse files
probability/03_probability_of_or.py
CHANGED
@@ -10,7 +10,7 @@
|
|
10 |
import marimo
|
11 |
|
12 |
__generated_with = "0.11.2"
|
13 |
-
app = marimo.App()
|
14 |
|
15 |
|
16 |
@app.cell
|
@@ -141,6 +141,7 @@ def _(mo):
|
|
141 |
Why subtract $P(E \cap F)$? Because when we add $P(E)$ and $P(F)$, we count the overlap twice!
|
142 |
|
143 |
For example, consider calculating $P(\text{prime or even})$ when rolling a die:
|
|
|
144 |
- Prime numbers: {2, 3, 5}
|
145 |
- Even numbers: {2, 4, 6}
|
146 |
- The number 2 is counted twice unless we subtract its probability
|
@@ -235,7 +236,9 @@ def _(event_type, mo, plt, venn2):
|
|
235 |
### Mutually Exclusive Events
|
236 |
|
237 |
$P(\text{Odd}) = \frac{3}{6} = 0.5$
|
|
|
238 |
$P(\text{Even}) = \frac{3}{6} = 0.5$
|
|
|
239 |
$P(\text{Odd} \cap \text{Even}) = 0$
|
240 |
|
241 |
$P(\text{Odd} \cup \text{Even}) = P(\text{Odd}) + P(\text{Even}) = 1$
|
@@ -251,7 +254,9 @@ def _(event_type, mo, plt, venn2):
|
|
251 |
### Non-Mutually Exclusive Events
|
252 |
|
253 |
$P(\text{Prime}) = \frac{3}{6} = 0.5$ (2,3,5)
|
|
|
254 |
$P(\text{Even}) = \frac{3}{6} = 0.5$ (2,4,6)
|
|
|
255 |
$P(\text{Prime} \cap \text{Even}) = \frac{1}{6}$ (2)
|
256 |
|
257 |
$P(\text{Prime} \cup \text{Even}) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}$
|
@@ -267,7 +272,9 @@ def _(event_type, mo, plt, venn2):
|
|
267 |
### Complex Event Interaction
|
268 |
|
269 |
$P(x < 3) = \frac{2}{6}$ (1,2)
|
|
|
270 |
$P(\text{Even}) = \frac{3}{6}$ (2,4,6)
|
|
|
271 |
$P(x < 3 \cap \text{Even}) = \frac{1}{6}$ (2)
|
272 |
|
273 |
$P(x < 3 \cup \text{Even}) = \frac{2}{6} + \frac{3}{6} - \frac{1}{6} = \frac{4}{6}$
|
|
|
10 |
import marimo
|
11 |
|
12 |
__generated_with = "0.11.2"
|
13 |
+
app = marimo.App(width="medium")
|
14 |
|
15 |
|
16 |
@app.cell
|
|
|
141 |
Why subtract $P(E \cap F)$? Because when we add $P(E)$ and $P(F)$, we count the overlap twice!
|
142 |
|
143 |
For example, consider calculating $P(\text{prime or even})$ when rolling a die:
|
144 |
+
|
145 |
- Prime numbers: {2, 3, 5}
|
146 |
- Even numbers: {2, 4, 6}
|
147 |
- The number 2 is counted twice unless we subtract its probability
|
|
|
236 |
### Mutually Exclusive Events
|
237 |
|
238 |
$P(\text{Odd}) = \frac{3}{6} = 0.5$
|
239 |
+
|
240 |
$P(\text{Even}) = \frac{3}{6} = 0.5$
|
241 |
+
|
242 |
$P(\text{Odd} \cap \text{Even}) = 0$
|
243 |
|
244 |
$P(\text{Odd} \cup \text{Even}) = P(\text{Odd}) + P(\text{Even}) = 1$
|
|
|
254 |
### Non-Mutually Exclusive Events
|
255 |
|
256 |
$P(\text{Prime}) = \frac{3}{6} = 0.5$ (2,3,5)
|
257 |
+
|
258 |
$P(\text{Even}) = \frac{3}{6} = 0.5$ (2,4,6)
|
259 |
+
|
260 |
$P(\text{Prime} \cap \text{Even}) = \frac{1}{6}$ (2)
|
261 |
|
262 |
$P(\text{Prime} \cup \text{Even}) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}$
|
|
|
272 |
### Complex Event Interaction
|
273 |
|
274 |
$P(x < 3) = \frac{2}{6}$ (1,2)
|
275 |
+
|
276 |
$P(\text{Even}) = \frac{3}{6}$ (2,4,6)
|
277 |
+
|
278 |
$P(x < 3 \cap \text{Even}) = \frac{1}{6}$ (2)
|
279 |
|
280 |
$P(x < 3 \cup \text{Even}) = \frac{2}{6} + \frac{3}{6} - \frac{1}{6} = \frac{4}{6}$
|