Commit
·
2b22bff
1
Parent(s):
2063af3
Add file cache
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import vec2text
|
@@ -11,16 +13,36 @@ from sklearn.decomposition import PCA
|
|
11 |
from streamlit_plotly_events import plotly_events
|
12 |
import plotly.graph_objects as go
|
13 |
import logging
|
|
|
14 |
# Activate tqdm with pandas
|
15 |
tqdm.pandas()
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
@st.cache_resource
|
18 |
def vector_compressor_from_config():
|
19 |
-
|
20 |
-
# return PCA(n:n_components=2)
|
21 |
return UMAP(n_components=2)
|
22 |
|
23 |
-
# Caching the dataframe since loading from external source can be time-consuming
|
24 |
@st.cache_data
|
25 |
def load_data():
|
26 |
return pd.read_csv("https://huggingface.co/datasets/marksverdhei/reddit-syac-urls/resolve/main/train.csv")
|
@@ -50,8 +72,9 @@ def load_embeddings():
|
|
50 |
|
51 |
embeddings = load_embeddings()
|
52 |
|
53 |
-
#
|
54 |
-
@
|
|
|
55 |
def reduce_embeddings(embeddings):
|
56 |
reducer = vector_compressor_from_config()
|
57 |
return reducer.fit_transform(embeddings), reducer
|
@@ -79,15 +102,12 @@ fig.update_layout(
|
|
79 |
# Display the scatterplot and capture click events
|
80 |
selected_points = plotly_events(fig, click_event=True, hover_event=False, override_height=600, override_width="100%")
|
81 |
|
82 |
-
|
83 |
# If a point is clicked, handle the embedding inversion
|
84 |
if selected_points:
|
85 |
-
|
86 |
clicked_point = selected_points[0]
|
87 |
x_coord = x = clicked_point['x']
|
88 |
y_coord = y = clicked_point['y']
|
89 |
|
90 |
-
|
91 |
inferred_embedding = reducer.inverse_transform(np.array([[x, y]]) if not isinstance(reducer, UMAP) else np.array([[x, y]]))
|
92 |
|
93 |
inferred_embedding = inferred_embedding.astype("float32")
|
@@ -101,4 +121,4 @@ if selected_points:
|
|
101 |
st.text(str(output))
|
102 |
st.text(str(inferred_embedding))
|
103 |
else:
|
104 |
-
st.text("Click on a point in the scatterplot to see its coordinates.")
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
5 |
import vec2text
|
|
|
13 |
from streamlit_plotly_events import plotly_events
|
14 |
import plotly.graph_objects as go
|
15 |
import logging
|
16 |
+
|
17 |
# Activate tqdm with pandas
|
18 |
tqdm.pandas()
|
19 |
|
20 |
+
# Custom file cache decorator
|
21 |
+
def file_cache(file_path):
|
22 |
+
def decorator(func):
|
23 |
+
def wrapper(*args, **kwargs):
|
24 |
+
# Check if the file already exists
|
25 |
+
if os.path.exists(file_path):
|
26 |
+
# Load from cache
|
27 |
+
with open(file_path, "rb") as f:
|
28 |
+
print(f"Loading cached data from {file_path}")
|
29 |
+
return pickle.load(f)
|
30 |
+
else:
|
31 |
+
# Compute and save to cache
|
32 |
+
result = func(*args, **kwargs)
|
33 |
+
with open(file_path, "wb") as f:
|
34 |
+
pickle.dump(result, f)
|
35 |
+
print(f"Saving new cache to {file_path}")
|
36 |
+
return result
|
37 |
+
return wrapper
|
38 |
+
return decorator
|
39 |
+
|
40 |
@st.cache_resource
|
41 |
def vector_compressor_from_config():
|
42 |
+
# Return UMAP with 2 components for dimensionality reduction
|
|
|
43 |
return UMAP(n_components=2)
|
44 |
|
45 |
+
# Caching the dataframe since loading from an external source can be time-consuming
|
46 |
@st.cache_data
|
47 |
def load_data():
|
48 |
return pd.read_csv("https://huggingface.co/datasets/marksverdhei/reddit-syac-urls/resolve/main/train.csv")
|
|
|
72 |
|
73 |
embeddings = load_embeddings()
|
74 |
|
75 |
+
# Custom cache the UMAP reduction using file_cache decorator
|
76 |
+
@file_cache(".cache/reducer_embeddings.pickle")
|
77 |
+
@st.cache_data
|
78 |
def reduce_embeddings(embeddings):
|
79 |
reducer = vector_compressor_from_config()
|
80 |
return reducer.fit_transform(embeddings), reducer
|
|
|
102 |
# Display the scatterplot and capture click events
|
103 |
selected_points = plotly_events(fig, click_event=True, hover_event=False, override_height=600, override_width="100%")
|
104 |
|
|
|
105 |
# If a point is clicked, handle the embedding inversion
|
106 |
if selected_points:
|
|
|
107 |
clicked_point = selected_points[0]
|
108 |
x_coord = x = clicked_point['x']
|
109 |
y_coord = y = clicked_point['y']
|
110 |
|
|
|
111 |
inferred_embedding = reducer.inverse_transform(np.array([[x, y]]) if not isinstance(reducer, UMAP) else np.array([[x, y]]))
|
112 |
|
113 |
inferred_embedding = inferred_embedding.astype("float32")
|
|
|
121 |
st.text(str(output))
|
122 |
st.text(str(inferred_embedding))
|
123 |
else:
|
124 |
+
st.text("Click on a point in the scatterplot to see its coordinates.")
|