Spaces:
Sleeping
Sleeping
import streamlit as st | |
import yfinance as yf | |
import pandas as pd | |
import plotly.graph_objs as go | |
import numpy as np | |
from plotly.subplots import make_subplots | |
import os | |
from langchain.embeddings import GooglePalmEmbeddings | |
from langchain.llms import GooglePalm | |
from langchain.document_loaders import UnstructuredURLLoader #load urls into docoument-loader | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.indexes import VectorstoreIndexCreator #vectorize db index with chromadb | |
from langchain.text_splitter import CharacterTextSplitter #text splitter | |
from langchain.chains import RetrievalQA | |
from langchain.document_loaders import UnstructuredPDFLoader #load pdf | |
from langchain.agents import create_pandas_dataframe_agent | |
import google.generativeai as palm | |
isPswdValid = True # Set to True to temporarily disable password checking | |
palm_api_key = st.secrets["PALM_API_KEY"] | |
try: | |
pswdVal = st.query_params()['pwd'][0] | |
if pswdVal==st.secrets["PSWD"]: | |
isPswdValid = True | |
except: | |
pass | |
if not isPswdValid: | |
st.write("Invalid Password") | |
else: | |
# Initialize language model | |
api_key = palm_api_key # put your API key here | |
os.environ["GOOGLE_API_KEY"] = palm_api_key | |
palm.configure(api_key=palm_api_key) | |
llm = GooglePalm() | |
llm.temperature = 0.1 | |
# Set the Streamlit app title and icon | |
st.set_page_config(page_title="Stock Analysis", page_icon="📈") | |
# Create a Streamlit sidebar for user input | |
st.sidebar.title("Stock Analysis") | |
ticker_symbol = st.sidebar.text_input("Enter Stock Ticker Symbol:", value='AAPL') | |
start_date = st.sidebar.date_input("Start Date", pd.to_datetime('2024-01-01')) | |
end_date = st.sidebar.date_input("End Date", pd.to_datetime('2024-10-01')) | |
# Fetch stock data from Yahoo Finance | |
try: | |
stock_data = yf.download(ticker_symbol, start=start_date, end=end_date) | |
except Exception as e: | |
st.error("Error fetching stock data. Please check the ticker symbol and date range.") | |
df = stock_data | |
df.reset_index(inplace=True) # Reset index to ensure 'Date' becomes a column | |
# Create figure with secondary y-axis | |
fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
# include candlestick with rangeselector | |
fig.add_trace(go.Candlestick(x=df['Date'], # Except date, query all other data using Symbol | |
open=df['Open'][ticker_symbol], high=df['High'][ticker_symbol], | |
low=df['Low'][ticker_symbol], close=df['Close'][ticker_symbol]), | |
secondary_y=True) | |
# include a go.Bar trace for volumes | |
fig.add_trace(go.Bar(x=df['Date'], y=df['Volume'][ticker_symbol]), | |
secondary_y=False) | |
fig.layout.yaxis2.showgrid=False | |
st.plotly_chart(fig) | |
# Technical Indicators | |
st.header("Technical Indicators") | |
# Moving Averages | |
st.subheader("Moving Averages") | |
df['SMA_20'] = df['Close'][ticker_symbol].rolling(window=20).mean() | |
df['SMA_50'] = df['Close'][ticker_symbol].rolling(window=50).mean() | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=df['Date'], y=df['Close'][ticker_symbol], mode='lines', name='Close Price')) | |
fig.add_trace(go.Scatter(x=df['Date'], y=df['SMA_20'], mode='lines', name='20-Day SMA')) | |
fig.add_trace(go.Scatter(x=df['Date'], y=df['SMA_50'], mode='lines', name='50-Day SMA')) | |
fig.update_layout(title="Moving Averages", xaxis_title="Date", yaxis_title="Price (USD)") | |
st.plotly_chart(fig) | |
# RSI (Manual Calculation) | |
st.subheader("Relative Strength Index (RSI)") | |
window_length = 14 | |
# Calculate the daily price changes | |
delta = df['Close'][ticker_symbol].diff() | |
# Separate gains and losses | |
gain = delta.where(delta > 0, 0) | |
loss = -delta.where(delta < 0, 0) | |
# Calculate the average gain and average loss | |
avg_gain = gain.rolling(window=window_length, min_periods=1).mean() | |
avg_loss = loss.rolling(window=window_length, min_periods=1).mean() | |
# Calculate the RSI | |
rs = avg_gain / avg_loss | |
df['RSI'] = 100 - (100 / (1 + rs)) | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=df['Date'], y=df['RSI'], mode='lines', name='RSI')) | |
fig.add_hline(y=70, line_dash="dash", line_color="red", annotation_text="Overbought") | |
fig.add_hline(y=30, line_dash="dash", line_color="green", annotation_text="Oversold") | |
fig.update_layout(title="RSI Indicator", xaxis_title="Date", yaxis_title="RSI") | |
st.plotly_chart(fig) | |
# Volume Analysis | |
st.subheader("Volume Analysis") | |
fig = go.Figure() | |
fig.add_trace(go.Bar(x=df['Date'], y=df['Volume'][ticker_symbol], name='Volume')) | |
fig.update_layout(title="Volume Analysis", xaxis_title="Date", yaxis_title="Volume") | |
st.plotly_chart(fig) | |
from langchain.document_loaders import DataFrameLoader | |
loader = DataFrameLoader(df) | |
index = VectorstoreIndexCreator(embedding=GooglePalmEmbeddings()).from_loaders([loader]) | |
# index = VectorstoreIndexCreator( | |
# embedding=GooglePalmEmbeddings(), | |
# text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)).from_loaders(loader) | |
chain = RetrievalQA.from_chain_type(llm=llm, | |
chain_type="stuff", | |
retriever=index.vectorstore.as_retriever(), | |
input_key="question") | |
# Additional Insights | |
st.header("In-depth Analysis") | |
# Prepare text for PaLM | |
chatTextStr = f""" | |
Analyze the following stock data for patterns, trends, and insights. | |
Provide a detailed summary of key market movements. | |
""" | |
# Initializing the agent | |
agent = create_pandas_dataframe_agent(llm, df[['Date', 'Open', 'High', 'Low', 'Close']].tail(10), verbose=False) | |
answer = agent.run(chatTextStr) | |
# # Query PaLM API | |
# try: | |
# response = palm.generate_text( | |
# prompt=chatTextStr, | |
# temperature=0.1, | |
# max_output_tokens=500 | |
# ) | |
# st.write(response.result) | |
# except Exception as e: | |
# st.error(f"Error using Google PaLM API: {e}") | |
st.markdown(""" | |
Google Gemini API analysis: | |
{answer} | |
""") | |
# User Interaction | |
st.header("Custom Analysis") | |
start_date = st.date_input("Select start date:", value=pd.to_datetime("2024-01-01")) | |
end_date = st.date_input("Select end date:", value=pd.to_datetime("2024-09-30")) | |
# Ensure all dates are timezone-naive | |
df['Date'] = pd.to_datetime(df['Date']).dt.tz_localize(None) | |
start_date = pd.to_datetime(start_date).tz_localize(None) | |
end_date = pd.to_datetime(end_date).tz_localize(None) | |
# Filter the DataFrame based on the date range | |
filtered_df = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] | |
st.write(filtered_df) |