stkmkt / app.py
markytools's picture
upgraded stock market simulator
d398fc9
raw
history blame
6.82 kB
import streamlit as st
import yfinance as yf
import pandas as pd
import plotly.graph_objs as go
import numpy as np
from plotly.subplots import make_subplots
import os
from langchain.embeddings import GooglePalmEmbeddings
from langchain.llms import GooglePalm
from langchain.document_loaders import UnstructuredURLLoader #load urls into docoument-loader
from langchain.chains.question_answering import load_qa_chain
from langchain.indexes import VectorstoreIndexCreator #vectorize db index with chromadb
from langchain.text_splitter import CharacterTextSplitter #text splitter
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredPDFLoader #load pdf
from langchain.agents import create_pandas_dataframe_agent
import google.generativeai as palm
isPswdValid = True # Set to True to temporarily disable password checking
palm_api_key = st.secrets["PALM_API_KEY"]
try:
pswdVal = st.query_params()['pwd'][0]
if pswdVal==st.secrets["PSWD"]:
isPswdValid = True
except:
pass
if not isPswdValid:
st.write("Invalid Password")
else:
# Initialize language model
api_key = palm_api_key # put your API key here
os.environ["GOOGLE_API_KEY"] = palm_api_key
palm.configure(api_key=palm_api_key)
llm = GooglePalm()
llm.temperature = 0.1
# Set the Streamlit app title and icon
st.set_page_config(page_title="Stock Analysis", page_icon="📈")
# Create a Streamlit sidebar for user input
st.sidebar.title("Stock Analysis")
ticker_symbol = st.sidebar.text_input("Enter Stock Ticker Symbol:", value='AAPL')
start_date = st.sidebar.date_input("Start Date", pd.to_datetime('2024-01-01'))
end_date = st.sidebar.date_input("End Date", pd.to_datetime('2024-10-01'))
# Fetch stock data from Yahoo Finance
try:
stock_data = yf.download(ticker_symbol, start=start_date, end=end_date)
except Exception as e:
st.error("Error fetching stock data. Please check the ticker symbol and date range.")
df = stock_data
df.reset_index(inplace=True) # Reset index to ensure 'Date' becomes a column
# Create figure with secondary y-axis
fig = make_subplots(specs=[[{"secondary_y": True}]])
# include candlestick with rangeselector
fig.add_trace(go.Candlestick(x=df['Date'], # Except date, query all other data using Symbol
open=df['Open'][ticker_symbol], high=df['High'][ticker_symbol],
low=df['Low'][ticker_symbol], close=df['Close'][ticker_symbol]),
secondary_y=True)
# include a go.Bar trace for volumes
fig.add_trace(go.Bar(x=df['Date'], y=df['Volume'][ticker_symbol]),
secondary_y=False)
fig.layout.yaxis2.showgrid=False
st.plotly_chart(fig)
# Technical Indicators
st.header("Technical Indicators")
# Moving Averages
st.subheader("Moving Averages")
df['SMA_20'] = df['Close'][ticker_symbol].rolling(window=20).mean()
df['SMA_50'] = df['Close'][ticker_symbol].rolling(window=50).mean()
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['Date'], y=df['Close'][ticker_symbol], mode='lines', name='Close Price'))
fig.add_trace(go.Scatter(x=df['Date'], y=df['SMA_20'], mode='lines', name='20-Day SMA'))
fig.add_trace(go.Scatter(x=df['Date'], y=df['SMA_50'], mode='lines', name='50-Day SMA'))
fig.update_layout(title="Moving Averages", xaxis_title="Date", yaxis_title="Price (USD)")
st.plotly_chart(fig)
# RSI (Manual Calculation)
st.subheader("Relative Strength Index (RSI)")
window_length = 14
# Calculate the daily price changes
delta = df['Close'][ticker_symbol].diff()
# Separate gains and losses
gain = delta.where(delta > 0, 0)
loss = -delta.where(delta < 0, 0)
# Calculate the average gain and average loss
avg_gain = gain.rolling(window=window_length, min_periods=1).mean()
avg_loss = loss.rolling(window=window_length, min_periods=1).mean()
# Calculate the RSI
rs = avg_gain / avg_loss
df['RSI'] = 100 - (100 / (1 + rs))
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['Date'], y=df['RSI'], mode='lines', name='RSI'))
fig.add_hline(y=70, line_dash="dash", line_color="red", annotation_text="Overbought")
fig.add_hline(y=30, line_dash="dash", line_color="green", annotation_text="Oversold")
fig.update_layout(title="RSI Indicator", xaxis_title="Date", yaxis_title="RSI")
st.plotly_chart(fig)
# Volume Analysis
st.subheader("Volume Analysis")
fig = go.Figure()
fig.add_trace(go.Bar(x=df['Date'], y=df['Volume'][ticker_symbol], name='Volume'))
fig.update_layout(title="Volume Analysis", xaxis_title="Date", yaxis_title="Volume")
st.plotly_chart(fig)
from langchain.document_loaders import DataFrameLoader
loader = DataFrameLoader(df)
index = VectorstoreIndexCreator(embedding=GooglePalmEmbeddings()).from_loaders([loader])
# index = VectorstoreIndexCreator(
# embedding=GooglePalmEmbeddings(),
# text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)).from_loaders(loader)
chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=index.vectorstore.as_retriever(),
input_key="question")
# Additional Insights
st.header("In-depth Analysis")
# Prepare text for PaLM
chatTextStr = f"""
Analyze the following stock data for patterns, trends, and insights.
Provide a detailed summary of key market movements.
"""
# Initializing the agent
agent = create_pandas_dataframe_agent(llm, df[['Date', 'Open', 'High', 'Low', 'Close']].tail(10), verbose=False)
answer = agent.run(chatTextStr)
# # Query PaLM API
# try:
# response = palm.generate_text(
# prompt=chatTextStr,
# temperature=0.1,
# max_output_tokens=500
# )
# st.write(response.result)
# except Exception as e:
# st.error(f"Error using Google PaLM API: {e}")
st.markdown("""
Google Gemini API analysis:
{answer}
""")
# User Interaction
st.header("Custom Analysis")
start_date = st.date_input("Select start date:", value=pd.to_datetime("2024-01-01"))
end_date = st.date_input("Select end date:", value=pd.to_datetime("2024-09-30"))
# Ensure all dates are timezone-naive
df['Date'] = pd.to_datetime(df['Date']).dt.tz_localize(None)
start_date = pd.to_datetime(start_date).tz_localize(None)
end_date = pd.to_datetime(end_date).tz_localize(None)
# Filter the DataFrame based on the date range
filtered_df = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
st.write(filtered_df)