Spaces:
Build error
Build error
File size: 23,622 Bytes
7978529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import settings
import captum
import numpy as np
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from utils import get_args
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter
import string
import time
import sys
from dataset import hierarchical_dataset, AlignCollate
import validators
from model import Model, STRScore
from PIL import Image
from lime.wrappers.scikit_image import SegmentationAlgorithm
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
import random
import os
from skimage.color import gray2rgb
import pickle
from train_shap_corr import getPredAndConf
import re
from captum_test import acquire_average_auc, saveAttrData
import copy
from skimage.color import gray2rgb
from matplotlib import pyplot as plt
from torchvision import transforms
device = torch.device('cpu')
from captum.attr import (
GradientShap,
DeepLift,
DeepLiftShap,
IntegratedGradients,
LayerConductance,
NeuronConductance,
NoiseTunnel,
Saliency,
InputXGradient,
GuidedBackprop,
Deconvolution,
GuidedGradCam,
FeatureAblation,
ShapleyValueSampling,
Lime,
KernelShap
)
from captum.metrics import (
infidelity,
sensitivity_max
)
from captum.attr._utils.visualization import visualize_image_attr
### Acquire pixelwise attributions and replace them with ranked numbers averaged
### across segmentation with the largest contribution having the largest number
### and the smallest set to 1, which is the minimum number.
### attr - original attribution
### segm - image segmentations
def rankedAttributionsBySegm(attr, segm):
aveSegmentations, sortedDict = averageSegmentsOut(attr[0,0], segm)
totalSegm = len(sortedDict.keys()) # total segmentations
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
currentRank = totalSegm
rankedSegmImg = torch.clone(attr)
for totalSegToHide in range(0, len(sortedKeys)):
currentSegmentToHide = sortedKeys[totalSegToHide]
rankedSegmImg[0,0][segm == currentSegmentToHide] = currentRank
currentRank -= 1
return rankedSegmImg
### Returns the mean for each segmentation having shape as the same as the input
### This function can only one attribution image at a time
def averageSegmentsOut(attr, segments):
averagedInput = torch.clone(attr)
sortedDict = {}
for x in np.unique(segments):
segmentMean = torch.mean(attr[segments == x][:])
sortedDict[x] = float(segmentMean.detach().cpu().numpy())
averagedInput[segments == x] = segmentMean
return averagedInput, sortedDict
### Output and save segmentations only for one dataset only
def outputSegmOnly(opt):
### targetDataset - one dataset only, SVTP-645, CUTE80-288images
targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmentations/224X224/{}/".format(targetDataset)
if not os.path.exists(segmRootDir):
os.makedirs(segmRootDir)
opt.eval = True
### Only IIIT5k_3000
if opt.fast_acc:
# # To easily compute the total accuracy of our paper.
eval_data_list = [targetDataset]
else:
# The evaluation datasets, dataset order is same with Table 1 in our paper.
eval_data_list = [targetDataset]
### Taken from LIME
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
max_dist=200, ratio=0.2,
random_seed=random.randint(0, 1000))
for eval_data in eval_data_list:
eval_data_path = os.path.join(opt.eval_data, eval_data)
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt)
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=1,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
for i, (image_tensors, labels) in enumerate(evaluation_loader):
imgDataDict = {}
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
if img_numpy.shape[0] == 1:
img_numpy = gray2rgb(img_numpy[0])
# print("img_numpy shape: ", img_numpy.shape) # (224,224,3)
segmOutput = segmentation_fn(img_numpy)
imgDataDict['segdata'] = segmOutput
imgDataDict['label'] = labels[0]
outputPickleFile = segmRootDir + "{}.pkl".format(i)
with open(outputPickleFile, 'wb') as f:
pickle.dump(imgDataDict, f)
def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring):
# print("segmentations unique len: ", np.unique(segmentations))
aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations)
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
# print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...}
# print("aveSegmentations unique len: ", np.unique(aveSegmentations))
# print("aveSegmentations device: ", aveSegmentations.device) # cuda:0
# print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224)
# print("aveSegmentations: ", aveSegmentations)
n_correct = []
confidenceList = [] # First index is one feature removed, second index two features removed, and so on...
clonedImg = torch.clone(origImg)
gt = str(labels)
for totalSegToHide in range(0, len(sortedKeys)):
### Acquire LIME prediction result
currentSegmentToHide = sortedKeys[totalSegToHide]
clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0
pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt]))
# To evaluate 'case sensitive model' with alphanumeric and case insensitve setting.
if opt.sensitive and opt.data_filtering_off:
pred = pred.lower()
gt = gt.lower()
alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz'
out_of_alphanumeric_case_insensitve = f"[^{alphanumeric_case_insensitve}]"
pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred)
gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt)
if pred == gt:
n_correct.append(1)
else:
n_correct.append(0)
confScore = confScore[0][0]*100
confidenceList.append(confScore)
return n_correct, confidenceList
### Once you have the selectivity_eval_results.pkl file,
def acquire_selectivity_auc(opt, pkl_filename=None):
if pkl_filename is None:
pkl_filename = "/home/goo/str/str_vit_dataexplain_lambda/metrics_sensitivity_eval_results_CUTE80.pkl" # VITSTR
accKeys = []
with open(pkl_filename, 'rb') as f:
selectivity_data = pickle.load(f)
for resDictIdx, resDict in enumerate(selectivity_data):
keylistAcc = []
keylistConf = []
metricsKeys = resDict.keys()
for keyStr in resDict.keys():
if "_acc" in keyStr: keylistAcc.append(keyStr)
if "_conf" in keyStr: keylistConf.append(keyStr)
# Need to check if network correctly predicted the image
for metrics_accStr in keylistAcc:
if 1 not in resDict[metrics_accStr]: print("resDictIdx")
# Single directory STRExp explanations output demo
def sampleDemo(opt, modelName):
targetDataset = "SVTP"
demoImgDir = "demo_image/"
outputDir = "demo_image_output/"
if not os.path.exists(outputDir):
os.makedirs(outputDir)
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
max_dist=200, ratio=0.2,
random_seed=random.randint(0, 1000))
if modelName=="vitstr":
if opt.Transformer:
converter = TokenLabelConverter(opt)
elif 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model_obj = Model(opt)
model = torch.nn.DataParallel(model_obj).to(device)
modelCopy = copy.deepcopy(model)
""" evaluation """
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True)
super_pixel_model_singlechar = torch.nn.Sequential(
# super_pixler,
# numpy2torch_converter,
modelCopy,
scoring_singlechar
).to(device)
modelCopy.eval()
scoring_singlechar.eval()
super_pixel_model_singlechar.eval()
# Single Char Attribution Averaging
# enableSingleCharAttrAve - set to True
scoring = STRScore(opt=opt, converter=converter, device=device)
super_pixel_model = torch.nn.Sequential(
# super_pixler,
# numpy2torch_converter,
model,
scoring
).to(device)
model.eval()
scoring.eval()
super_pixel_model.eval()
elif modelName=="parseq":
model = torch.hub.load('baudm/parseq', 'parseq', pretrained=True)
# checkpoint = torch.hub.load_state_dict_from_url('https://github.com/baudm/parseq/releases/download/v1.0.0/parseq-bb5792a6.pt', map_location="cpu")
# # state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()}
# model.load_state_dict(checkpoint)
model = model.to(device)
model_obj = model
converter = TokenLabelConverter(opt)
modelCopy = copy.deepcopy(model)
""" evaluation """
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True, model=modelCopy)
super_pixel_model_singlechar = torch.nn.Sequential(
# super_pixler,
# numpy2torch_converter,
modelCopy,
scoring_singlechar
).to(device)
modelCopy.eval()
scoring_singlechar.eval()
super_pixel_model_singlechar.eval()
# Single Char Attribution Averaging
# enableSingleCharAttrAve - set to True
scoring = STRScore(opt=opt, converter=converter, device=device, model=model)
super_pixel_model = torch.nn.Sequential(
# super_pixler,
# numpy2torch_converter,
model,
scoring
).to(device)
model.eval()
scoring.eval()
super_pixel_model.eval()
if opt.blackbg:
shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32)
trainList = np.array(shapImgLs)
background = torch.from_numpy(trainList).to(device)
opt.eval = True
for path, subdirs, files in os.walk(demoImgDir):
for name in files:
nameNoExt = name.split('.')[0]
labels = nameNoExt.split("_")[-1]
fullfilename = os.path.join(demoImgDir, name) # Value
pilImg = Image.open(fullfilename)
pilImg = pilImg.resize((opt.imgW, opt.imgH))
# fullfilename: /data/goo/strattr/attributionData/trba/CUTE80/66_featablt.pkl
### Single char averaging
if modelName == 'vitstr':
orig_img_tensors = transforms.ToTensor()(pilImg)
orig_img_tensors = torch.mean(orig_img_tensors, dim=0).unsqueeze(0).unsqueeze(0)
image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0
imgDataDict = {}
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
if img_numpy.shape[0] == 1:
img_numpy = gray2rgb(img_numpy[0])
# print("img_numpy shape: ", img_numpy.shape) # (32,100,3)
segmOutput = segmentation_fn(img_numpy)
# print("orig_img_tensors shape: ", orig_img_tensors.shape) # (3, 224, 224)
# print("orig_img_tensors max: ", orig_img_tensors.max()) # 0.6824 (1)
# print("orig_img_tensors min: ", orig_img_tensors.min()) # 0.0235 (0)
# sys.exit()
results_dict = {}
aveAttr = []
aveAttr_charContrib = []
# segmData, labels = segAndLabels[0]
target = converter.encode([labels])
# labels: RONALDO
segmDataNP = segmOutput
segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
# print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
segmTensor = segmTensor.to(device)
# print("segmTensor shape: ", segmTensor.shape)
# img1 = np.asarray(imgPIL.convert('L'))
# sys.exit()
# img1 = img1 / 255.0
# img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
img1 = orig_img_tensors.to(device)
img1.requires_grad = True
bgImg = torch.zeros(img1.shape).to(device)
input = img1
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
origImgNP = gray2rgb(origImgNP)
charOffset = 1
# preds = model(img1, seqlen=converter.batch_max_length)
### Local explanations only
collectedAttributions = []
for charIdx in range(0, len(labels)):
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
gtClassNum = target[0][charIdx + charOffset]
### Shapley Value Sampling
svs = ShapleyValueSampling(super_pixel_model_singlechar)
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
attributions = svs.attribute(input, target=gtClassNum, feature_mask=segmTensor)
collectedAttributions.append(attributions)
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
if not torch.isnan(aveAttributions).any():
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt))
mplotfig.clear()
plt.close(mplotfig)
### Shapley Value Sampling
svs = ShapleyValueSampling(super_pixel_model)
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
attributions = svs.attribute(input, target=0, feature_mask=segmTensor)
if not torch.isnan(attributions).any():
collectedAttributions.append(attributions)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt))
mplotfig.clear()
plt.close(mplotfig)
### Global + Local context
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
if not torch.isnan(aveAttributions).any():
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt))
mplotfig.clear()
plt.close(mplotfig)
return
elif modelName == 'parseq':
orig_img_tensors = transforms.ToTensor()(pilImg).unsqueeze(0)
img1 = orig_img_tensors.to(device)
# image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0
image_tensors = torch.mean(orig_img_tensors, dim=1).unsqueeze(0).unsqueeze(0)
imgDataDict = {}
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
if img_numpy.shape[0] == 1:
img_numpy = gray2rgb(img_numpy[0])
# print("img_numpy shape: ", img_numpy.shape) # (1, 32, 128, 3)
segmOutput = segmentation_fn(img_numpy[0])
results_dict = {}
aveAttr = []
aveAttr_charContrib = []
target = converter.encode([labels])
# labels: RONALDO
segmDataNP = segmOutput
img1.requires_grad = True
bgImg = torch.zeros(img1.shape).to(device)
# preds = model(img1, seqlen=converter.batch_max_length)
input = img1
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
origImgNP = gray2rgb(origImgNP)
charOffset = 0
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1
target = converter.encode([labels])
### Local explanations only
collectedAttributions = []
for charIdx in range(0, len(labels)):
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
gtClassNum = target[0][charIdx + charOffset]
gs = GradientShap(super_pixel_model_singlechar)
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
baseline_dist = baseline_dist.to(device)
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
collectedAttributions.append(attributions)
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
if not torch.isnan(aveAttributions).any():
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt))
mplotfig.clear()
plt.close(mplotfig)
### Local Sampling
gs = GradientShap(super_pixel_model)
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
baseline_dist = baseline_dist.to(device)
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
if not torch.isnan(attributions).any():
collectedAttributions.append(attributions)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt))
mplotfig.clear()
plt.close(mplotfig)
### Global + Local context
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
if not torch.isnan(aveAttributions).any():
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt))
mplotfig.clear()
plt.close(mplotfig)
continue
if __name__ == '__main__':
# deleteInf()
opt = get_args(is_train=False)
""" vocab / character number configuration """
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
cudnn.benchmark = True
cudnn.deterministic = True
# opt.num_gpu = torch.cuda.device_count()
# combineBestDataXAI(opt)
# acquire_average_auc(opt)
# acquireSingleCharAttrAve(opt)
modelName = "parseq"
opt.modelName = modelName
opt.eval_data = "datasets/data_lmdb_release/evaluation"
if modelName=="vitstr":
opt.benchmark_all_eval = True
opt.Transformation = "None"
opt.FeatureExtraction = "None"
opt.SequenceModeling = "None"
opt.Prediction = "None"
opt.Transformer = True
opt.sensitive = True
opt.imgH = 224
opt.imgW = 224
opt.data_filtering_off = True
opt.TransformerModel= "vitstr_base_patch16_224"
opt.saved_model = "pretrained/vitstr_base_patch16_224_aug.pth"
opt.batch_size = 1
opt.workers = 0
opt.scorer = "mean"
opt.blackbg = True
elif modelName=="parseq":
opt.benchmark_all_eval = True
opt.Transformation = "None"
opt.FeatureExtraction = "None"
opt.SequenceModeling = "None"
opt.Prediction = "None"
opt.Transformer = True
opt.sensitive = True
opt.imgH = 32
opt.imgW = 128
opt.data_filtering_off = True
opt.batch_size = 1
opt.workers = 0
opt.scorer = "mean"
opt.blackbg = True
sampleDemo(opt, modelName)
|