strexp / app.py
markytools's picture
updated app
dffa77d
raw
history blame
6.8 kB
import streamlit as st
from PIL import Image
import settings
import captum
import numpy as np
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from utils import get_args
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter
import string
import time
import sys
from dataset import hierarchical_dataset, AlignCollate
import validators
from model import Model, STRScore
from PIL import Image
from lime.wrappers.scikit_image import SegmentationAlgorithm
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
import random
import os
from skimage.color import gray2rgb
import pickle
from train_shap_corr import getPredAndConf
import re
from captum_test import acquire_average_auc, saveAttrData
import copy
from skimage.color import gray2rgb
from matplotlib import pyplot as plt
from torchvision import transforms
device = torch.device('cpu')
opt = get_args(is_train=False)
""" vocab / character number configuration """
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
cudnn.benchmark = True
cudnn.deterministic = True
# opt.num_gpu = torch.cuda.device_count()
# combineBestDataXAI(opt)
# acquire_average_auc(opt)
# acquireSingleCharAttrAve(opt)
modelName = "parseq"
opt.modelName = modelName
# opt.eval_data = "datasets/data_lmdb_release/evaluation"
if modelName=="vitstr":
opt.benchmark_all_eval = True
opt.Transformation = "None"
opt.FeatureExtraction = "None"
opt.SequenceModeling = "None"
opt.Prediction = "None"
opt.Transformer = True
opt.sensitive = True
opt.imgH = 224
opt.imgW = 224
opt.data_filtering_off = True
opt.TransformerModel= "vitstr_base_patch16_224"
opt.saved_model = "pretrained/vitstr_base_patch16_224_aug.pth"
opt.batch_size = 1
opt.workers = 0
opt.scorer = "mean"
opt.blackbg = True
elif modelName=="parseq":
opt.benchmark_all_eval = True
opt.Transformation = "None"
opt.FeatureExtraction = "None"
opt.SequenceModeling = "None"
opt.Prediction = "None"
opt.Transformer = True
opt.sensitive = True
opt.imgH = 32
opt.imgW = 128
opt.data_filtering_off = True
opt.batch_size = 1
opt.workers = 0
opt.scorer = "mean"
opt.blackbg = True
# x = st.slider('Select a value')
# st.write(x, 'squared is', x * x)
image = Image.open('demo_image/demo_ballys.jpg') #Brand logo image (optional)
#Create two columns with different width
col1, col2 = st.columns( [0.8, 0.2])
with col1: # To display the header text using css style
st.markdown(""" <style> .font {
font-size:35px ; font-family: 'Cooper Black'; color: #FF9633;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font">Upload your photo here...</p>', unsafe_allow_html=True)
with col2: # To display brand logo
st.image(image, width=150)
uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg"])
if uploaded_file is not None:
# To read file as bytes:
bytes_data = uploaded_file.getvalue()
pilImg = Image.open(uploaded_file)
orig_img_tensors = transforms.ToTensor()(pilImg).unsqueeze(0)
img1 = orig_img_tensors.to(device)
# image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0
image_tensors = torch.mean(orig_img_tensors, dim=1).unsqueeze(0).unsqueeze(0)
imgDataDict = {}
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
if img_numpy.shape[0] == 1:
img_numpy = gray2rgb(img_numpy[0])
# print("img_numpy shape: ", img_numpy.shape) # (1, 32, 128, 3)
segmOutput = segmentation_fn(img_numpy[0])
results_dict = {}
aveAttr = []
aveAttr_charContrib = []
target = converter.encode([labels])
# labels: RONALDO
segmDataNP = segmOutput
img1.requires_grad = True
bgImg = torch.zeros(img1.shape).to(device)
# preds = model(img1, seqlen=converter.batch_max_length)
input = img1
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
origImgNP = gray2rgb(origImgNP)
charOffset = 0
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1
target = converter.encode([labels])
### Local explanations only
collectedAttributions = []
for charIdx in range(0, len(labels)):
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
gtClassNum = target[0][charIdx + charOffset]
gs = GradientShap(super_pixel_model_singlechar)
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
baseline_dist = baseline_dist.to(device)
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
collectedAttributions.append(attributions)
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
# if not torch.isnan(aveAttributions).any():
# rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
# rankedAttr = gray2rgb(rankedAttr)
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
# mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt))
# mplotfig.clear()
# plt.close(mplotfig)
### Local Sampling
gs = GradientShap(super_pixel_model)
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
baseline_dist = baseline_dist.to(device)
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
# if not torch.isnan(attributions).any():
# collectedAttributions.append(attributions)
# rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
# rankedAttr = gray2rgb(rankedAttr)
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
# mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt))
# mplotfig.clear()
# plt.close(mplotfig)
### Global + Local context
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
if not torch.isnan(aveAttributions).any():
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
fig = mplotfig.figure(figsize=(8,8))
st.pyplot(fig)
# mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt))
# mplotfig.clear()
# plt.close(mplotfig)