Spaces:
Build error
Build error
import os | |
import time | |
import string | |
import argparse | |
import re | |
import sys | |
import random | |
import pickle | |
import torch | |
import torch.backends.cudnn as cudnn | |
import torch.utils.data | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
import numpy as np | |
from skimage.color import gray2rgb | |
from nltk.metrics.distance import edit_distance | |
import cv2 | |
from utils import CTCLabelConverter, AttnLabelConverter, Averager | |
from dataset_trba import hierarchical_dataset, AlignCollate | |
from model_trba import Model, SuperPixler, CastNumpy, STRScore | |
# import hiddenlayer as hl | |
from lime import lime_image | |
from lime.wrappers.scikit_image import SegmentationAlgorithm | |
import matplotlib.pyplot as plt | |
import random | |
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge | |
import statistics | |
import settings | |
import sys | |
import copy | |
from captum_test import acquire_average_auc, saveAttrData | |
from captum_improve_vitstr import rankedAttributionsBySegm | |
from matplotlib import pyplot as plt | |
from captum.attr._utils.visualization import visualize_image_attr | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
from captum.attr import ( | |
GradientShap, | |
DeepLift, | |
DeepLiftShap, | |
IntegratedGradients, | |
LayerConductance, | |
NeuronConductance, | |
NoiseTunnel, | |
Saliency, | |
InputXGradient, | |
GuidedBackprop, | |
Deconvolution, | |
GuidedGradCam, | |
FeatureAblation, | |
ShapleyValueSampling, | |
Lime, | |
KernelShap | |
) | |
from captum.metrics import ( | |
infidelity, | |
sensitivity_max | |
) | |
def getPredAndConf(opt, model, scoring, image, converter, labels): | |
batch_size = image.size(0) | |
length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device) | |
text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device) | |
text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length) | |
if 'CTC' in opt.Prediction: | |
preds = model(image, text_for_pred) | |
confScore = scoring(preds) | |
confScore = confScore.detach().cpu().numpy() | |
# Calculate evaluation loss for CTC deocder. | |
preds_size = torch.IntTensor([preds.size(1)] * batch_size) | |
# Select max probabilty (greedy decoding) then decode index to character | |
if opt.baiduCTC: | |
_, preds_index = preds.max(2) | |
preds_index = preds_index.view(-1) | |
else: | |
_, preds_index = preds.max(2) | |
preds_str = converter.decode(preds_index.data, preds_size.data)[0] | |
else: | |
preds = model(image, text_for_pred, is_train=False) | |
confScore = scoring(preds) | |
confScore = confScore.detach().cpu().numpy() | |
preds = preds[:, :text_for_loss.shape[1] - 1, :] | |
target = text_for_loss[:, 1:] # without [GO] Symbol | |
# cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1)) | |
# select max probabilty (greedy decoding) then decode index to character | |
_, preds_index = preds.max(2) | |
preds_str = converter.decode(preds_index, length_for_pred) | |
### Remove all chars after '[s]' | |
preds_str = preds_str[0] | |
preds_str = preds_str[:preds_str.find('[s]')] | |
# pred = pred[:pred_EOS] | |
return preds_str, confScore | |
### Output and save segmentations only for one dataset only | |
def outputSegmOnly(opt): | |
### targetDataset - one dataset only, SVTP-645, CUTE80-288images | |
targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80'] | |
targetHeight = 32 | |
targetWidth = 100 | |
segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmen"\ | |
"tations/{}X{}/{}/".format(targetHeight, targetWidth, targetDataset) | |
if not os.path.exists(segmRootDir): | |
os.makedirs(segmRootDir) | |
opt.eval = True | |
### Only IIIT5k_3000 | |
eval_data_list = [targetDataset] | |
target_output_orig = opt.outputOrigDir | |
### Taken from LIME | |
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4, | |
max_dist=200, ratio=0.2, | |
random_seed=random.randint(0, 1000)) | |
for eval_data in eval_data_list: | |
eval_data_path = os.path.join(opt.eval_data, eval_data) | |
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD) | |
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig) | |
evaluation_loader = torch.utils.data.DataLoader( | |
eval_data, batch_size=1, | |
shuffle=False, | |
num_workers=int(opt.workers), | |
collate_fn=AlignCollate_evaluation, pin_memory=True) | |
for i, (image_tensors, labels) in enumerate(evaluation_loader): | |
image_tensors = ((image_tensors + 1.0) / 2.0) * 255.0 | |
imgDataDict = {} | |
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only | |
if img_numpy.shape[0] == 1: | |
img_numpy = gray2rgb(img_numpy[0]) | |
# print("img_numpy shape: ", img_numpy.shape) # (32,100,3) | |
segmOutput = segmentation_fn(img_numpy) | |
# print("segmOutput unique: ", len(np.unique(segmOutput))) | |
imgDataDict['segdata'] = segmOutput | |
imgDataDict['label'] = labels[0] | |
outputPickleFile = segmRootDir + "{}.pkl".format(i) | |
with open(outputPickleFile, 'wb') as f: | |
pickle.dump(imgDataDict, f) | |
### Returns the mean for each segmentation having shape as the same as the input | |
### This function can only one attribution image at a time | |
def averageSegmentsOut(attr, segments): | |
averagedInput = torch.clone(attr) | |
sortedDict = {} | |
for x in np.unique(segments): | |
segmentMean = torch.mean(attr[segments == x][:]) | |
sortedDict[x] = float(segmentMean.detach().cpu().numpy()) | |
averagedInput[segments == x] = segmentMean | |
return averagedInput, sortedDict | |
def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring): | |
# print("segmentations unique len: ", np.unique(segmentations)) | |
aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations) | |
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])] | |
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score | |
# print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...} | |
# print("aveSegmentations unique len: ", np.unique(aveSegmentations)) | |
# print("aveSegmentations device: ", aveSegmentations.device) # cuda:0 | |
# print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224) | |
# print("aveSegmentations: ", aveSegmentations) | |
n_correct = [] | |
confidenceList = [] # First index is one feature removed, second index two features removed, and so on... | |
clonedImg = torch.clone(origImg) | |
gt = str(labels[0]) | |
for totalSegToHide in range(0, len(sortedKeys)): | |
### Acquire LIME prediction result | |
currentSegmentToHide = sortedKeys[totalSegToHide] | |
clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0 | |
pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt])) | |
# To evaluate 'case sensitive model' with alphanumeric and case insensitve setting. | |
if opt.sensitive and opt.data_filtering_off: | |
pred = pred.lower() | |
gt = gt.lower() | |
alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz' | |
out_of_alphanumeric_case_insensitve = f'[^{alphanumeric_case_insensitve}]' | |
pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred) | |
gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt) | |
if pred == gt: | |
n_correct.append(1) | |
else: | |
n_correct.append(0) | |
confScore = confScore[0][0]*100 | |
confidenceList.append(confScore) | |
return n_correct, confidenceList | |
def main(opt): | |
# 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80' | |
datasetName = settings.TARGET_DATASET | |
custom_segm_dataroot = "{}/{}X{}/{}/".format(settings.SEGM_DIR, opt.imgH, opt.imgW, datasetName) | |
outputSelectivityPkl = "strexp_ave_{}_{}.pkl".format(settings.MODEL, datasetName) | |
outputDir = "./attributionImgs/{}/{}/".format(settings.MODEL, datasetName) | |
attrOutputDir = "./attributionData/{}/{}/".format(settings.MODEL, datasetName) | |
acquireSelectivity = True | |
acquireInfidelity = False | |
acquireSensitivity = False ### GPU error | |
imgHeight = 32 | |
imgWidth = 100 | |
if not os.path.exists(outputDir): | |
os.makedirs(outputDir) | |
if not os.path.exists(attrOutputDir): | |
os.makedirs(attrOutputDir) | |
""" model configuration """ | |
if 'CTC' in opt.Prediction: | |
converter = CTCLabelConverter(opt.character) | |
else: | |
converter = AttnLabelConverter(opt.character) | |
opt.num_class = len(converter.character) | |
if opt.rgb: | |
opt.input_channel = 3 | |
model_obj = Model(opt, device) | |
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel, | |
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction, | |
opt.SequenceModeling, opt.Prediction) | |
model = torch.nn.DataParallel(model_obj).to(device) | |
# load model | |
print('loading pretrained model from %s' % opt.saved_model) | |
model.load_state_dict(torch.load(opt.saved_model, map_location=device)) | |
opt.exp_name = '_'.join(opt.saved_model.split('/')[1:]) | |
modelCopy = copy.deepcopy(model) | |
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True) | |
super_pixel_model_singlechar = torch.nn.Sequential( | |
# super_pixler, | |
# numpy2torch_converter, | |
modelCopy, | |
scoring_singlechar | |
).to(device) | |
modelCopy.train() | |
scoring_singlechar.train() | |
super_pixel_model_singlechar.train() | |
scoring = STRScore(opt=opt, converter=converter, device=device) | |
super_pixel_model = torch.nn.Sequential( | |
model, | |
scoring | |
) | |
model.train() | |
scoring.train() | |
super_pixel_model.train() | |
""" keep evaluation model and result logs """ | |
os.makedirs(f'./result/{opt.exp_name}', exist_ok=True) | |
os.system(f'cp {opt.saved_model} ./result/{opt.exp_name}/') | |
""" setup loss """ | |
if 'CTC' in opt.Prediction: | |
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device) | |
else: | |
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0 | |
"""Output shap values""" | |
""" evaluation with 10 benchmark evaluation datasets """ | |
# The evaluation datasets, dataset order is same with Table 1 in our paper. | |
# eval_data_list = ['IIIT5k_3000', 'IC03_860', 'IC03_867', 'IC15_1811'] | |
target_output_orig = opt.outputOrigDir | |
# eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', | |
# 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'] | |
# eval_data_list = ['IIIT5k_3000'] | |
eval_data_list = [datasetName] | |
# # To easily compute the total accuracy of our paper. | |
# eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_867', | |
# 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80'] | |
list_accuracy = [] | |
total_forward_time = 0 | |
total_evaluation_data_number = 0 | |
total_correct_number = 0 | |
log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a') | |
dashed_line = '-' * 80 | |
print(dashed_line) | |
log.write(dashed_line + '\n') | |
selectivity_eval_results = [] | |
imageData = [] | |
targetText = "all" | |
middleMaskThreshold = 5 | |
testImgCount = 0 | |
imgResultDir = str(opt.Transformation) + "-" + str(opt.FeatureExtraction) + "-" + str(opt.SequenceModeling) + "-" + str(opt.Prediction) + "-" + str(opt.scorer) | |
# define a perturbation function for the input (used for calculating infidelity) | |
def perturb_fn(modelInputs): | |
noise = torch.tensor(np.random.normal(0, 0.003, modelInputs.shape)).float() | |
noise = noise.to(device) | |
return noise, modelInputs - noise | |
if opt.blackbg: | |
shapImgLs = np.zeros(shape=(1, 1, 32, 100)).astype(np.float32) | |
trainList = np.array(shapImgLs) | |
background = torch.from_numpy(trainList).to(device) | |
if imgResultDir != "": | |
if not os.path.exists(imgResultDir): | |
os.makedirs(imgResultDir) | |
for eval_data in eval_data_list: | |
eval_data_path = os.path.join(opt.eval_data, eval_data) | |
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD) | |
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig) | |
evaluation_loader = torch.utils.data.DataLoader( | |
eval_data, batch_size=1, | |
shuffle=False, | |
num_workers=int(opt.workers), | |
collate_fn=AlignCollate_evaluation, pin_memory=True) | |
# image_tensors, labels = next(iter(evaluation_loader)) ### Iterate one batch only | |
for i, (orig_img_tensors, labels) in enumerate(evaluation_loader): | |
# img_rgb *= 255.0 | |
# img_rgb = img_rgb.astype('int') | |
# print("img_rgb max: ", img_rgb.max()) ### 255 | |
# img_rgb = np.asarray(orig_img_tensors) | |
# segmentations = segmentation_fn(img_rgb) | |
# print("segmentations shape: ", segmentations.shape) # (224, 224) | |
# print("segmentations min: ", segmentations.min()) 0 | |
# print("Unique: ", len(np.unique(segmentations))) # (70) | |
# print("target: ", target) tensor([[ 0, 29, 26, 25, 12 | |
results_dict = {} | |
pklFilename = custom_segm_dataroot + "{}.pkl".format(i) | |
with open(pklFilename, 'rb') as f: | |
pklData = pickle.load(f) | |
segmDataNP = pklData["segdata"] | |
# print("segmDataNP unique: ", len(np.unique(segmDataNP))) | |
assert pklData["label"] == labels[0] | |
segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0) | |
# print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation | |
segmTensor = segmTensor.to(device) | |
# print("segmTensor shape: ", segmTensor.shape) | |
# img1 = np.asarray(imgPIL.convert('L')) | |
# sys.exit() | |
# img1 = img1 / 255.0 | |
# img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device) | |
img1 = orig_img_tensors.to(device) | |
img1.requires_grad = True | |
bgImg = torch.zeros(img1.shape).to(device) | |
# preds = model(img1, seqlen=converter.batch_max_length) | |
target = converter.encode(labels) | |
target = target[0][:, 1:] | |
charOffset = 0 | |
input = img1 | |
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224) | |
origImgNP = gray2rgb(origImgNP) | |
# preds = model(input) | |
# preds_prob = F.softmax(preds, dim=2) | |
# preds_max_prob, preds_max_idx = preds_prob.max(dim=2) | |
# print("preds_max_idx: ", preds_max_idx) tensor([[14, 26, 25, 12 | |
### Captum test | |
collectedAttributions = [] | |
for charIdx in range(0, len(labels)): | |
scoring_singlechar.setSingleCharOutput(charIdx + charOffset) | |
gtClassNum = target[0][charIdx + charOffset] | |
### Shapley Value Sampling | |
svs = ShapleyValueSampling(super_pixel_model_singlechar) | |
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate | |
attributions = svs.attribute(input, target=gtClassNum, feature_mask=segmTensor) | |
collectedAttributions.append(attributions) | |
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_shapley_l.pkl', aveAttributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar) | |
results_dict["shapley_local_acc"] = n_correct | |
results_dict["shapley_local_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy()) | |
results_dict["shapley_local_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["shapley_local_sens"] = sens | |
### Shapley Value Sampling | |
svs = ShapleyValueSampling(super_pixel_model) | |
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate | |
attributions = svs.attribute(input, target=0, feature_mask=segmTensor) | |
collectedAttributions.append(attributions) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_shapley.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_shapley.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["shapley_acc"] = n_correct | |
results_dict["shapley_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy()) | |
results_dict["shapley_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["shapley_sens"] = sens | |
### Global + Local context | |
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_shapley_gl.pkl', aveAttributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar) | |
results_dict["shapley_global_local_acc"] = n_correct | |
results_dict["shapley_global_local_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy()) | |
results_dict["shapley_global_local_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["shapley_global_local_sens"] = sens | |
# Baselines | |
### Integrated Gradients | |
ig = IntegratedGradients(super_pixel_model) | |
attributions = ig.attribute(input, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_intgrad.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_intgrad.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["intgrad_acc"] = n_correct | |
results_dict["intgrad_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy()) | |
results_dict["intgrad_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(ig.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["intgrad_sens"] = sens | |
### Gradient SHAP using zero-background | |
gs = GradientShap(super_pixel_model) | |
# We define a distribution of baselines and draw `n_samples` from that | |
# distribution in order to estimate the expectations of gradients across all baselines | |
baseline_dist = torch.zeros((1, 1, imgHeight, imgWidth)) | |
baseline_dist = baseline_dist.to(device) | |
attributions = gs.attribute(input, baselines=baseline_dist, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_gradshap.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_gradshap.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["gradshap_acc"] = n_correct | |
results_dict["gradshap_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy()) | |
results_dict["gradshap_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(gs.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["gradshap_sens"] = sens | |
### DeepLift using zero-background | |
dl = DeepLift(super_pixel_model) | |
attributions = dl.attribute(input, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_deeplift.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_deeplift.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["deeplift_acc"] = n_correct | |
results_dict["deeplift_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy()) | |
results_dict["deeplift_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(dl.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["deeplift_sens"] = sens | |
### Saliency | |
saliency = Saliency(super_pixel_model) | |
attributions = saliency.attribute(input, target=0) ### target=class0 | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_saliency.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_saliency.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["saliency_acc"] = n_correct | |
results_dict["saliency_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy()) | |
results_dict["saliency_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(saliency.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["saliency_sens"] = sens | |
### InputXGradient | |
input_x_gradient = InputXGradient(super_pixel_model) | |
attributions = input_x_gradient.attribute(input, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_inpxgrad.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_inpxgrad.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["inpxgrad_acc"] = n_correct | |
results_dict["inpxgrad_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy()) | |
results_dict["inpxgrad_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(input_x_gradient.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["inpxgrad_sens"] = sens | |
## GuidedBackprop | |
gbp = GuidedBackprop(super_pixel_model) | |
attributions = gbp.attribute(input, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_guidedbp.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_guidedbp.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["guidedbp_acc"] = n_correct | |
results_dict["guidedbp_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy()) | |
results_dict["guidedbp_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(gbp.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["guidedbp_sens"] = sens | |
# | |
# ## Deconvolution | |
deconv = Deconvolution(super_pixel_model) | |
attributions = deconv.attribute(input, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_deconv.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_deconv.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["deconv_acc"] = n_correct | |
results_dict["deconv_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy()) | |
results_dict["deconv_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(deconv.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["deconv_sens"] = sens | |
### Feature ablator | |
ablator = FeatureAblation(super_pixel_model) | |
attributions = ablator.attribute(input, target=0, feature_mask=segmTensor) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_featablt.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_featablt.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["featablt_acc"] = n_correct | |
results_dict["featablt_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy()) | |
results_dict["featablt_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(ablator.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["featablt_sens"] = sens | |
## LIME | |
interpretable_model = SkLearnRidge(alpha=1, fit_intercept=True) ### This is the default used by LIME | |
lime = Lime(super_pixel_model, interpretable_model=interpretable_model) | |
attributions = lime.attribute(input, target=0, feature_mask=segmTensor) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_lime.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_lime.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["lime_acc"] = n_correct | |
results_dict["lime_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy()) | |
results_dict["lime_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(lime.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["lime_sens"] = sens | |
### KernelSHAP | |
ks = KernelShap(super_pixel_model) | |
attributions = ks.attribute(input, target=0, feature_mask=segmTensor) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_kernelshap.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_kernelshap.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["kernelshap_acc"] = n_correct | |
results_dict["kernelshap_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy()) | |
results_dict["kernelshap_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(ks.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["kernelshap_sens"] = sens | |
selectivity_eval_results.append(results_dict) | |
with open(outputSelectivityPkl, 'wb') as f: | |
pickle.dump(selectivity_eval_results, f) | |
testImgCount += 1 | |
print("testImgCount: ", testImgCount) | |
def outputOrigImagesOnly(opt): | |
datasetName = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80'] | |
opt.outputOrigDir = "./datasetOrigImgs/{}/".format(datasetName) | |
opt.output_orig = True | |
opt.corruption_num = 0 | |
opt.apply_corruptions = False | |
opt.min_imgnum = 0 | |
opt.max_imgnum = 1000 | |
target_output_orig = opt.outputOrigDir | |
if not os.path.exists(target_output_orig): | |
os.makedirs(target_output_orig) | |
""" model configuration """ | |
if 'CTC' in opt.Prediction: | |
converter = CTCLabelConverter(opt.character) | |
else: | |
converter = AttnLabelConverter(opt.character) | |
opt.num_class = len(converter.character) | |
if opt.rgb: | |
opt.input_channel = 3 | |
model_obj = Model(opt, device) | |
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel, | |
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction, | |
opt.SequenceModeling, opt.Prediction) | |
model = torch.nn.DataParallel(model_obj).to(device) | |
# load model | |
print('loading pretrained model from %s' % opt.saved_model) | |
model.load_state_dict(torch.load(opt.saved_model, map_location=device)) | |
opt.exp_name = '_'.join(opt.saved_model.split('/')[1:]) | |
scoring = STRScore(opt=opt, converter=converter, device=device) | |
### | |
super_pixel_model = torch.nn.Sequential( | |
model, | |
scoring | |
) | |
model.train() | |
scoring.train() | |
super_pixel_model.train() | |
# print(model) | |
""" keep evaluation model and result logs """ | |
os.makedirs(f'./result/{opt.exp_name}', exist_ok=True) | |
os.system(f'cp {opt.saved_model} ./result/{opt.exp_name}/') | |
""" setup loss """ | |
if 'CTC' in opt.Prediction: | |
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device) | |
else: | |
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0 | |
"""Output shap values""" | |
""" evaluation with 10 benchmark evaluation datasets """ | |
# The evaluation datasets, dataset order is same with Table 1 in our paper. | |
# eval_data_list = ['IIIT5k_3000', 'IC03_860', 'IC03_867', 'IC15_1811'] | |
# eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', | |
# 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'] | |
# eval_data_list = ['IIIT5k_3000'] | |
eval_data_list = [datasetName] | |
# # To easily compute the total accuracy of our paper. | |
# eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_867', | |
# 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80'] | |
list_accuracy = [] | |
total_forward_time = 0 | |
total_evaluation_data_number = 0 | |
total_correct_number = 0 | |
log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a') | |
dashed_line = '-' * 80 | |
print(dashed_line) | |
log.write(dashed_line + '\n') | |
selectivity_eval_results = [] | |
imageData = [] | |
targetText = "all" | |
middleMaskThreshold = 5 | |
testImgCount = 0 | |
imgResultDir = str(opt.Transformation) + "-" + str(opt.FeatureExtraction) + "-" + str(opt.SequenceModeling) + "-" + str(opt.Prediction) + "-" + str(opt.scorer) | |
if opt.blackbg: | |
shapImgLs = np.zeros(shape=(1, 1, 32, 100)).astype(np.float32) | |
trainList = np.array(shapImgLs) | |
background = torch.from_numpy(trainList).to(device) | |
if imgResultDir != "": | |
if not os.path.exists(imgResultDir): | |
os.makedirs(imgResultDir) | |
for eval_data in eval_data_list: | |
eval_data_path = os.path.join(opt.eval_data, eval_data) | |
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD) | |
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig) | |
evaluation_loader = torch.utils.data.DataLoader( | |
eval_data, batch_size=1, | |
shuffle=False, | |
num_workers=int(opt.workers), | |
collate_fn=AlignCollate_evaluation, pin_memory=True) | |
# image_tensors, labels = next(iter(evaluation_loader)) ### Iterate one batch only | |
for i, (orig_img_tensors, labels) in enumerate(evaluation_loader): | |
testImgCount += 1 | |
print("testImgCount: ", testImgCount) | |
### Use to check if the model predicted the image or not. Output a pickle file with the image index. | |
def modelDatasetPredOnly(opt): | |
### targetDataset - one dataset only, CUTE80 has 288 samples | |
targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80'] | |
outputSelectivityPkl = "metrics_predictonly_results_{}.pkl".format(targetDataset) | |
start_time = time.time() | |
""" model configuration """ | |
if 'CTC' in opt.Prediction: | |
converter = CTCLabelConverter(opt.character) | |
else: | |
converter = AttnLabelConverter(opt.character) | |
opt.num_class = len(converter.character) | |
if opt.rgb: | |
opt.input_channel = 3 | |
model_obj = Model(opt, device) | |
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel, | |
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction, | |
opt.SequenceModeling, opt.Prediction) | |
model = torch.nn.DataParallel(model_obj).to(device) | |
# load model | |
print('loading pretrained model from %s' % opt.saved_model) | |
model.load_state_dict(torch.load(opt.saved_model, map_location=device)) | |
opt.exp_name = '_'.join(opt.saved_model.split('/')[1:]) | |
scoring = STRScore(opt=opt, converter=converter, device=device) | |
### | |
super_pixel_model = torch.nn.Sequential( | |
model, | |
scoring | |
) | |
model.train() | |
scoring.train() | |
super_pixel_model.train() | |
if opt.blackbg: | |
shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32) | |
trainList = np.array(shapImgLs) | |
background = torch.from_numpy(trainList).to(device) | |
opt.eval = True | |
eval_data_list = [targetDataset] | |
testImgCount = 0 | |
list_accuracy = [] | |
total_forward_time = 0 | |
total_evaluation_data_number = 0 | |
total_correct_number = 0 | |
log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a') | |
dashed_line = '-' * 80 | |
print(dashed_line) | |
log.write(dashed_line + '\n') | |
target_output_orig = opt.outputOrigDir | |
predOutput = [] | |
for eval_data in eval_data_list: | |
eval_data_path = os.path.join(opt.eval_data, eval_data) | |
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD) | |
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, targetDir=target_output_orig) | |
evaluation_loader = torch.utils.data.DataLoader( | |
eval_data, batch_size=1, | |
shuffle=False, | |
num_workers=int(opt.workers), | |
collate_fn=AlignCollate_evaluation, pin_memory=True) | |
testImgCount = 0 | |
for i, (orig_img_tensors, labels) in enumerate(evaluation_loader): | |
image = orig_img_tensors.to(device) | |
batch_size = 1 | |
length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device) | |
text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device) | |
text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length) | |
if 'CTC' in opt.Prediction: | |
preds = model(image, text_for_pred) | |
confScore = scoring(preds) | |
confScore = confScore.detach().cpu().numpy() | |
# Calculate evaluation loss for CTC deocder. | |
preds_size = torch.IntTensor([preds.size(1)] * batch_size) | |
# Select max probabilty (greedy decoding) then decode index to character | |
if opt.baiduCTC: | |
_, preds_index = preds.max(2) | |
preds_index = preds_index.view(-1) | |
else: | |
_, preds_index = preds.max(2) | |
preds_str = converter.decode(preds_index.data, preds_size.data)[0] | |
else: | |
preds = model(image, text_for_pred, is_train=False) | |
confScore = scoring(preds) | |
confScore = confScore.detach().cpu().numpy() | |
preds = preds[:, :text_for_loss.shape[1] - 1, :] | |
target = text_for_loss[:, 1:] # without [GO] Symbol | |
# cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1)) | |
# select max probabilty (greedy decoding) then decode index to character | |
_, preds_index = preds.max(2) | |
preds_str = converter.decode(preds_index, length_for_pred) | |
### Remove all chars after '[s]' | |
preds_str = preds_str[0] | |
preds_str = preds_str[:preds_str.find('[s]')] | |
# print("preds_str: ", preds_str) # lowercased prediction | |
# print("labels: ", labels[0]) # gt already in lowercased | |
if preds_str==labels[0]: predOutput.append(1) | |
else: predOutput.append(0) | |
with open(outputSelectivityPkl, 'wb') as f: | |
pickle.dump(predOutput, f) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--eval_data', required=True, help='path to evaluation dataset') | |
parser.add_argument('--benchmark_all_eval', action='store_true', help='evaluate 10 benchmark evaluation datasets') | |
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4) | |
parser.add_argument('--batch_size', type=int, default=192, help='input batch size') | |
parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation") | |
""" Data processing """ | |
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length') | |
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image') | |
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image') | |
parser.add_argument('--superHeight', type=int, default=5, help='the height of the superpixel') | |
parser.add_argument('--superWidth', type=int, default=2, help='the width of the superpixel') | |
parser.add_argument('--min_imgnum', type=int, default=0, help='set this to skip for loop index of specific image number') | |
parser.add_argument('--max_imgnum', type=int, default=2, help='set this to skip for loop index of specific image number') | |
parser.add_argument('--severity', type=int, default=1, help='severity level if apply corruptions') | |
parser.add_argument('--scorer', type=str, default='cumprod', help='See STRScore: cumprod | mean') | |
parser.add_argument('--corruption_num', type=int, default=0, help='corruption to apply') | |
parser.add_argument('--confidence_mode', type=int, default=0, help='0-sum of argmax; 1-edit distance') | |
parser.add_argument('--outputOrigDir', type=str, default="output_orig/", help='output directory to save original \ | |
images. This will be automatically created. Needs --output_orig too.') | |
parser.add_argument('--output_orig', action='store_true', help='if true, output first original rgb image of each batch') | |
parser.add_argument('--compare_corrupt', action='store_true', help='set to true to output results across corruptions') | |
parser.add_argument('--is_shap', action='store_true', help='no need to call in command line') | |
parser.add_argument('--blackbg', action='store_true', help='if True, background color for covering features will be black(0)') | |
parser.add_argument('--rgb', action='store_true', help='use rgb input') | |
parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label') | |
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode') | |
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize') | |
parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode') | |
parser.add_argument('--apply_corruptions', action='store_true', help='apply corruptions to images') | |
parser.add_argument('--output_feat_maps', action='store_true', help='toggle this to output images of featmaps') | |
parser.add_argument('--baiduCTC', action='store_true', help='for data_filtering_off mode') | |
""" Model Architecture """ | |
parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS') | |
parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet') | |
parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM') | |
parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn') | |
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN') | |
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor') | |
parser.add_argument('--output_channel', type=int, default=512, | |
help='the number of output channel of Feature extractor') | |
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state') | |
opt = parser.parse_args() | |
""" vocab / character number configuration """ | |
if opt.sensitive: | |
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char). | |
cudnn.benchmark = True | |
cudnn.deterministic = True | |
opt.num_gpu = torch.cuda.device_count() | |
# acquire_average_auc(opt) | |
main(opt) | |
# outputOrigImagesOnly(opt) | |