strexp / lime /lime_image.py
markytools's picture
added strexp
d61b9c7
"""
Functions for explaining classifiers that use Image data.
"""
import copy
from functools import partial
import numpy as np
import sklearn
import sklearn.preprocessing
from sklearn.utils import check_random_state
from skimage.color import gray2rgb
from tqdm.auto import tqdm
from . import lime_base
from .wrappers.scikit_image import SegmentationAlgorithm
class ImageExplanation(object):
def __init__(self, image, segments):
"""Init function.
Args:
image: 3d numpy array
segments: 2d numpy array, with the output from skimage.segmentation
"""
self.image = image
self.segments = segments
self.intercept = {}
self.local_exp = {}
self.local_pred = None
def get_image_and_mask(self, label, positive_only=True, negative_only=False, hide_rest=False,
num_features=5, min_weight=0.):
"""Init function.
Args:
label: label to explain
positive_only: if True, only take superpixels that positively contribute to
the prediction of the label.
negative_only: if True, only take superpixels that negatively contribute to
the prediction of the label. If false, and so is positive_only, then both
negativey and positively contributions will be taken.
Both can't be True at the same time
hide_rest: if True, make the non-explanation part of the return
image gray
num_features: number of superpixels to include in explanation
min_weight: minimum weight of the superpixels to include in explanation
Returns:
(image, mask), where image is a 3d numpy array and mask is a 2d
numpy array that can be used with
skimage.segmentation.mark_boundaries
"""
if label not in self.local_exp:
raise KeyError('Label not in explanation')
if positive_only & negative_only:
raise ValueError("Positive_only and negative_only cannot be true at the same time.")
segments = self.segments
image = self.image
exp = self.local_exp[label]
mask = np.zeros(segments.shape, segments.dtype)
if hide_rest:
temp = np.zeros(self.image.shape)
else:
temp = self.image.copy()
if positive_only:
fs = [x[0] for x in exp
if x[1] > 0 and x[1] > min_weight][:num_features]
if negative_only:
fs = [x[0] for x in exp
if x[1] < 0 and abs(x[1]) > min_weight][:num_features]
if positive_only or negative_only:
for f in fs:
temp[segments == f] = image[segments == f].copy()
mask[segments == f] = 1
return temp, mask
else:
for f, w in exp[:num_features]:
if np.abs(w) < min_weight:
continue
c = 0 if w < 0 else 1
mask[segments == f] = -1 if w < 0 else 1
temp[segments == f] = image[segments == f].copy()
temp[segments == f, c] = np.max(image)
return temp, mask
class LimeImageExplainer(object):
"""Explains predictions on Image (i.e. matrix) data.
For numerical features, perturb them by sampling from a Normal(0,1) and
doing the inverse operation of mean-centering and scaling, according to the
means and stds in the training data. For categorical features, perturb by
sampling according to the training distribution, and making a binary
feature that is 1 when the value is the same as the instance being
explained."""
def __init__(self, kernel_width=.25, kernel=None, verbose=False,
feature_selection='auto', random_state=None):
"""Init function.
Args:
kernel_width: kernel width for the exponential kernel.
If None, defaults to sqrt(number of columns) * 0.75.
kernel: similarity kernel that takes euclidean distances and kernel
width as input and outputs weights in (0,1). If None, defaults to
an exponential kernel.
verbose: if true, print local prediction values from linear model
feature_selection: feature selection method. can be
'forward_selection', 'lasso_path', 'none' or 'auto'.
See function 'explain_instance_with_data' in lime_base.py for
details on what each of the options does.
random_state: an integer or numpy.RandomState that will be used to
generate random numbers. If None, the random state will be
initialized using the internal numpy seed.
"""
kernel_width = float(kernel_width)
if kernel is None:
def kernel(d, kernel_width):
return np.sqrt(np.exp(-(d ** 2) / kernel_width ** 2))
kernel_fn = partial(kernel, kernel_width=kernel_width)
self.random_state = check_random_state(random_state)
self.feature_selection = feature_selection
self.base = lime_base.LimeBase(kernel_fn, verbose, random_state=self.random_state)
### Custom function to acquire segmentation only, same as in the explain_instance() function
def acquireSegmOnly(self, img):
random_seed = self.random_state.randint(0, high=1000)
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
max_dist=200, ratio=0.2,
random_seed=random_seed)
segments = segmentation_fn(img)
return segments
def explain_instance(self, image, inputImg, classifier_fn, labels=(1,),
hide_color=None,
top_labels=5, num_features=100000, num_samples=1000,
batch_size=10,
segmentation_fn=None,
distance_metric='cosine',
model_regressor=None,
random_seed=None,
squaredSegm=None,
loadedSegmData=None):
"""Generates explanations for a prediction.
First, we generate neighborhood data by randomly perturbing features
from the instance (see __data_inverse). We then learn locally weighted
linear models on this neighborhood data to explain each of the classes
in an interpretable way (see lime_base.py).
Args:
image: 3 dimension RGB image. If this is only two dimensional,
we will assume it's a grayscale image and call gray2rgb.
classifier_fn: classifier prediction probability function, which
takes a numpy array and outputs prediction probabilities. For
ScikitClassifiers , this is classifier.predict_proba.
labels: iterable with labels to be explained.
hide_color: TODO
top_labels: if not None, ignore labels and produce explanations for
the K labels with highest prediction probabilities, where K is
this parameter.
num_features: maximum number of features present in explanation
num_samples: size of the neighborhood to learn the linear model
batch_size: TODO
distance_metric: the distance metric to use for weights.
model_regressor: sklearn regressor to use in explanation. Defaults
to Ridge regression in LimeBase. Must have model_regressor.coef_
and 'sample_weight' as a parameter to model_regressor.fit()
segmentation_fn: SegmentationAlgorithm, wrapped skimage
segmentation function
random_seed: integer used as random seed for the segmentation
algorithm. If None, a random integer, between 0 and 1000,
will be generated using the internal random number generator.
squaredSegm: integer or None (default):
Returns:
An ImageExplanation object (see lime_image.py) with the corresponding
explanations.
"""
if len(image.shape) == 2:
image = gray2rgb(image)
if random_seed is None:
random_seed = self.random_state.randint(0, high=1000)
if squaredSegm == 4:
segments = np.zeros((image.shape[0], image.shape[1]), dtype=np.int64)
imgW = image.shape[1]
halfW1 = 1*imgW//4
halfW2 = 2*imgW//4
halfW3 = 3*imgW//4
segments[:,0:halfW1] = 0
segments[:,halfW1:halfW2] = 1
segments[:,halfW2:halfW3] = 2
segments[:,halfW3:imgW] = 3
elif squaredSegm == -2: ### Use to load custom resized segm data
segments = loadedSegmData
else:
if segmentation_fn is None:
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
max_dist=200, ratio=0.2,
random_seed=random_seed)
try:
segments = segmentation_fn(image)
except ValueError as e:
raise e
fudged_image = image.copy()
if hide_color is None:
for x in np.unique(segments):
fudged_image[segments == x] = (
np.mean(image[segments == x][:, 0]),
np.mean(image[segments == x][:, 1]),
np.mean(image[segments == x][:, 2]))
else:
fudged_image[:] = hide_color
top = labels
data, labels = self.data_labels(image, inputImg, fudged_image, segments,
classifier_fn, num_samples,
batch_size=batch_size)
distances = sklearn.metrics.pairwise_distances(
data,
data[0].reshape(1, -1),
metric=distance_metric
).ravel()
ret_exp = ImageExplanation(image, segments)
if top_labels:
top = np.argsort(labels[0])[-top_labels:]
ret_exp.top_labels = list(top)
ret_exp.top_labels.reverse()
for label in top:
(ret_exp.intercept[label],
ret_exp.local_exp[label],
ret_exp.score, ret_exp.local_pred) = self.base.explain_instance_with_data(
data, labels, distances, label, num_features,
model_regressor=model_regressor,
feature_selection=self.feature_selection)
return ret_exp
def data_labels(self,
image,
inputImg,
fudged_image,
segments,
classifier_fn,
num_samples,
batch_size=10):
"""Generates images and predictions in the neighborhood of this image.
Args:
image: 3d numpy array, the image
fudged_image: 3d numpy array, image to replace original image when
superpixel is turned off
segments: segmentation of the image
classifier_fn: function that takes a list of images and returns a
matrix of prediction probabilities
num_samples: size of the neighborhood to learn the linear model
batch_size: classifier_fn will be called on batches of this size.
Returns:
A tuple (data, labels), where:
data: dense num_samples * num_superpixels
labels: prediction probabilities matrix
"""
n_features = np.unique(segments).shape[0]
data = self.random_state.randint(0, 2, num_samples * n_features)\
.reshape((num_samples, n_features))
labels = []
data[0, :] = 1
imgs = []
# print("data new shape: ", data.shape)
# assert(False)
# for row in tqdm(data):
for row in data:
temp = copy.deepcopy(image)
zeros = np.where(row == 0)[0]
mask = np.zeros(segments.shape).astype(bool)
for z in zeros:
mask[segments == z] = True
temp[mask] = fudged_image[mask]
imgs.append(temp)
if len(imgs) == batch_size:
preds = classifier_fn(inputImg)
preds = preds.cpu().detach().numpy()
labels.extend(preds)
imgs = []
if len(imgs) > 0:
preds = classifier_fn(inputImg)
preds = preds.cpu().detach().numpy()
labels.extend(preds)
return data, np.array(labels)