strexp / lime /lime_text.py
markytools's picture
added strexp
d61b9c7
"""
Functions for explaining text classifiers.
"""
from functools import partial
import itertools
import json
import re
import numpy as np
import scipy as sp
import sklearn
from sklearn.utils import check_random_state
from . import explanation
from . import lime_base
class TextDomainMapper(explanation.DomainMapper):
"""Maps feature ids to words or word-positions"""
def __init__(self, indexed_string):
"""Initializer.
Args:
indexed_string: lime_text.IndexedString, original string
"""
self.indexed_string = indexed_string
def map_exp_ids(self, exp, positions=False):
"""Maps ids to words or word-position strings.
Args:
exp: list of tuples [(id, weight), (id,weight)]
positions: if True, also return word positions
Returns:
list of tuples (word, weight), or (word_positions, weight) if
examples: ('bad', 1) or ('bad_3-6-12', 1)
"""
if positions:
exp = [('%s_%s' % (
self.indexed_string.word(x[0]),
'-'.join(
map(str,
self.indexed_string.string_position(x[0])))), x[1])
for x in exp]
else:
exp = [(self.indexed_string.word(x[0]), x[1]) for x in exp]
return exp
def visualize_instance_html(self, exp, label, div_name, exp_object_name,
text=True, opacity=True):
"""Adds text with highlighted words to visualization.
Args:
exp: list of tuples [(id, weight), (id,weight)]
label: label id (integer)
div_name: name of div object to be used for rendering(in js)
exp_object_name: name of js explanation object
text: if False, return empty
opacity: if True, fade colors according to weight
"""
if not text:
return u''
text = (self.indexed_string.raw_string()
.encode('utf-8', 'xmlcharrefreplace').decode('utf-8'))
text = re.sub(r'[<>&]', '|', text)
exp = [(self.indexed_string.word(x[0]),
self.indexed_string.string_position(x[0]),
x[1]) for x in exp]
all_occurrences = list(itertools.chain.from_iterable(
[itertools.product([x[0]], x[1], [x[2]]) for x in exp]))
all_occurrences = [(x[0], int(x[1]), x[2]) for x in all_occurrences]
ret = '''
%s.show_raw_text(%s, %d, %s, %s, %s);
''' % (exp_object_name, json.dumps(all_occurrences), label,
json.dumps(text), div_name, json.dumps(opacity))
return ret
class IndexedString(object):
"""String with various indexes."""
def __init__(self, raw_string, split_expression=r'\W+', bow=True,
mask_string=None):
"""Initializer.
Args:
raw_string: string with raw text in it
split_expression: Regex string or callable. If regex string, will be used with re.split.
If callable, the function should return a list of tokens.
bow: if True, a word is the same everywhere in the text - i.e. we
will index multiple occurrences of the same word. If False,
order matters, so that the same word will have different ids
according to position.
mask_string: If not None, replace words with this if bow=False
if None, default value is UNKWORDZ
"""
self.raw = raw_string
self.mask_string = 'UNKWORDZ' if mask_string is None else mask_string
if callable(split_expression):
tokens = split_expression(self.raw)
self.as_list = self._segment_with_tokens(self.raw, tokens)
tokens = set(tokens)
def non_word(string):
return string not in tokens
else:
# with the split_expression as a non-capturing group (?:), we don't need to filter out
# the separator character from the split results.
splitter = re.compile(r'(%s)|$' % split_expression)
self.as_list = [s for s in splitter.split(self.raw) if s]
non_word = splitter.match
self.as_np = np.array(self.as_list)
self.string_start = np.hstack(
([0], np.cumsum([len(x) for x in self.as_np[:-1]])))
vocab = {}
self.inverse_vocab = []
self.positions = []
self.bow = bow
non_vocab = set()
for i, word in enumerate(self.as_np):
if word in non_vocab:
continue
if non_word(word):
non_vocab.add(word)
continue
if bow:
if word not in vocab:
vocab[word] = len(vocab)
self.inverse_vocab.append(word)
self.positions.append([])
idx_word = vocab[word]
self.positions[idx_word].append(i)
else:
self.inverse_vocab.append(word)
self.positions.append(i)
if not bow:
self.positions = np.array(self.positions)
def raw_string(self):
"""Returns the original raw string"""
return self.raw
def num_words(self):
"""Returns the number of tokens in the vocabulary for this document."""
return len(self.inverse_vocab)
def word(self, id_):
"""Returns the word that corresponds to id_ (int)"""
return self.inverse_vocab[id_]
def string_position(self, id_):
"""Returns a np array with indices to id_ (int) occurrences"""
if self.bow:
return self.string_start[self.positions[id_]]
else:
return self.string_start[[self.positions[id_]]]
def inverse_removing(self, words_to_remove):
"""Returns a string after removing the appropriate words.
If self.bow is false, replaces word with UNKWORDZ instead of removing
it.
Args:
words_to_remove: list of ids (ints) to remove
Returns:
original raw string with appropriate words removed.
"""
mask = np.ones(self.as_np.shape[0], dtype='bool')
mask[self.__get_idxs(words_to_remove)] = False
if not self.bow:
return ''.join(
[self.as_list[i] if mask[i] else self.mask_string
for i in range(mask.shape[0])])
return ''.join([self.as_list[v] for v in mask.nonzero()[0]])
@staticmethod
def _segment_with_tokens(text, tokens):
"""Segment a string around the tokens created by a passed-in tokenizer"""
list_form = []
text_ptr = 0
for token in tokens:
inter_token_string = []
while not text[text_ptr:].startswith(token):
inter_token_string.append(text[text_ptr])
text_ptr += 1
if text_ptr >= len(text):
raise ValueError("Tokenization produced tokens that do not belong in string!")
text_ptr += len(token)
if inter_token_string:
list_form.append(''.join(inter_token_string))
list_form.append(token)
if text_ptr < len(text):
list_form.append(text[text_ptr:])
return list_form
def __get_idxs(self, words):
"""Returns indexes to appropriate words."""
if self.bow:
return list(itertools.chain.from_iterable(
[self.positions[z] for z in words]))
else:
return self.positions[words]
class IndexedCharacters(object):
"""String with various indexes."""
def __init__(self, raw_string, bow=True, mask_string=None):
"""Initializer.
Args:
raw_string: string with raw text in it
bow: if True, a char is the same everywhere in the text - i.e. we
will index multiple occurrences of the same character. If False,
order matters, so that the same word will have different ids
according to position.
mask_string: If not None, replace characters with this if bow=False
if None, default value is chr(0)
"""
self.raw = raw_string
self.as_list = list(self.raw)
self.as_np = np.array(self.as_list)
self.mask_string = chr(0) if mask_string is None else mask_string
self.string_start = np.arange(len(self.raw))
vocab = {}
self.inverse_vocab = []
self.positions = []
self.bow = bow
non_vocab = set()
for i, char in enumerate(self.as_np):
if char in non_vocab:
continue
if bow:
if char not in vocab:
vocab[char] = len(vocab)
self.inverse_vocab.append(char)
self.positions.append([])
idx_char = vocab[char]
self.positions[idx_char].append(i)
else:
self.inverse_vocab.append(char)
self.positions.append(i)
if not bow:
self.positions = np.array(self.positions)
def raw_string(self):
"""Returns the original raw string"""
return self.raw
def num_words(self):
"""Returns the number of tokens in the vocabulary for this document."""
return len(self.inverse_vocab)
def word(self, id_):
"""Returns the word that corresponds to id_ (int)"""
return self.inverse_vocab[id_]
def string_position(self, id_):
"""Returns a np array with indices to id_ (int) occurrences"""
if self.bow:
return self.string_start[self.positions[id_]]
else:
return self.string_start[[self.positions[id_]]]
def inverse_removing(self, words_to_remove):
"""Returns a string after removing the appropriate words.
If self.bow is false, replaces word with UNKWORDZ instead of removing
it.
Args:
words_to_remove: list of ids (ints) to remove
Returns:
original raw string with appropriate words removed.
"""
mask = np.ones(self.as_np.shape[0], dtype='bool')
mask[self.__get_idxs(words_to_remove)] = False
if not self.bow:
return ''.join(
[self.as_list[i] if mask[i] else self.mask_string
for i in range(mask.shape[0])])
return ''.join([self.as_list[v] for v in mask.nonzero()[0]])
def __get_idxs(self, words):
"""Returns indexes to appropriate words."""
if self.bow:
return list(itertools.chain.from_iterable(
[self.positions[z] for z in words]))
else:
return self.positions[words]
class LimeTextExplainer(object):
"""Explains text classifiers.
Currently, we are using an exponential kernel on cosine distance, and
restricting explanations to words that are present in documents."""
def __init__(self,
kernel_width=25,
kernel=None,
verbose=False,
class_names=None,
feature_selection='auto',
split_expression=r'\W+',
bow=True,
mask_string=None,
random_state=None,
char_level=False):
"""Init function.
Args:
kernel_width: kernel width for the exponential kernel.
kernel: similarity kernel that takes euclidean distances and kernel
width as input and outputs weights in (0,1). If None, defaults to
an exponential kernel.
verbose: if true, print local prediction values from linear model
class_names: list of class names, ordered according to whatever the
classifier is using. If not present, class names will be '0',
'1', ...
feature_selection: feature selection method. can be
'forward_selection', 'lasso_path', 'none' or 'auto'.
See function 'explain_instance_with_data' in lime_base.py for
details on what each of the options does.
split_expression: Regex string or callable. If regex string, will be used with re.split.
If callable, the function should return a list of tokens.
bow: if True (bag of words), will perturb input data by removing
all occurrences of individual words or characters.
Explanations will be in terms of these words. Otherwise, will
explain in terms of word-positions, so that a word may be
important the first time it appears and unimportant the second.
Only set to false if the classifier uses word order in some way
(bigrams, etc), or if you set char_level=True.
mask_string: String used to mask tokens or characters if bow=False
if None, will be 'UNKWORDZ' if char_level=False, chr(0)
otherwise.
random_state: an integer or numpy.RandomState that will be used to
generate random numbers. If None, the random state will be
initialized using the internal numpy seed.
char_level: an boolean identifying that we treat each character
as an independent occurence in the string
"""
if kernel is None:
def kernel(d, kernel_width):
return np.sqrt(np.exp(-(d ** 2) / kernel_width ** 2))
kernel_fn = partial(kernel, kernel_width=kernel_width)
self.random_state = check_random_state(random_state)
self.base = lime_base.LimeBase(kernel_fn, verbose,
random_state=self.random_state)
self.class_names = class_names
self.vocabulary = None
self.feature_selection = feature_selection
self.bow = bow
self.mask_string = mask_string
self.split_expression = split_expression
self.char_level = char_level
def explain_instance(self,
text_instance,
classifier_fn,
labels=(1,),
top_labels=None,
num_features=10,
num_samples=5000,
distance_metric='cosine',
model_regressor=None):
"""Generates explanations for a prediction.
First, we generate neighborhood data by randomly hiding features from
the instance (see __data_labels_distance_mapping). We then learn
locally weighted linear models on this neighborhood data to explain
each of the classes in an interpretable way (see lime_base.py).
Args:
text_instance: raw text string to be explained.
classifier_fn: classifier prediction probability function, which
takes a list of d strings and outputs a (d, k) numpy array with
prediction probabilities, where k is the number of classes.
For ScikitClassifiers , this is classifier.predict_proba.
labels: iterable with labels to be explained.
top_labels: if not None, ignore labels and produce explanations for
the K labels with highest prediction probabilities, where K is
this parameter.
num_features: maximum number of features present in explanation
num_samples: size of the neighborhood to learn the linear model
distance_metric: the distance metric to use for sample weighting,
defaults to cosine similarity
model_regressor: sklearn regressor to use in explanation. Defaults
to Ridge regression in LimeBase. Must have model_regressor.coef_
and 'sample_weight' as a parameter to model_regressor.fit()
Returns:
An Explanation object (see explanation.py) with the corresponding
explanations.
"""
indexed_string = (IndexedCharacters(
text_instance, bow=self.bow, mask_string=self.mask_string)
if self.char_level else
IndexedString(text_instance, bow=self.bow,
split_expression=self.split_expression,
mask_string=self.mask_string))
domain_mapper = TextDomainMapper(indexed_string)
data, yss, distances = self.__data_labels_distances(
indexed_string, classifier_fn, num_samples,
distance_metric=distance_metric)
if self.class_names is None:
self.class_names = [str(x) for x in range(yss[0].shape[0])]
ret_exp = explanation.Explanation(domain_mapper=domain_mapper,
class_names=self.class_names,
random_state=self.random_state)
ret_exp.predict_proba = yss[0]
if top_labels:
labels = np.argsort(yss[0])[-top_labels:]
ret_exp.top_labels = list(labels)
ret_exp.top_labels.reverse()
for label in labels:
(ret_exp.intercept[label],
ret_exp.local_exp[label],
ret_exp.score, ret_exp.local_pred) = self.base.explain_instance_with_data(
data, yss, distances, label, num_features,
model_regressor=model_regressor,
feature_selection=self.feature_selection)
return ret_exp
def __data_labels_distances(self,
indexed_string,
classifier_fn,
num_samples,
distance_metric='cosine'):
"""Generates a neighborhood around a prediction.
Generates neighborhood data by randomly removing words from
the instance, and predicting with the classifier. Uses cosine distance
to compute distances between original and perturbed instances.
Args:
indexed_string: document (IndexedString) to be explained,
classifier_fn: classifier prediction probability function, which
takes a string and outputs prediction probabilities. For
ScikitClassifier, this is classifier.predict_proba.
num_samples: size of the neighborhood to learn the linear model
distance_metric: the distance metric to use for sample weighting,
defaults to cosine similarity.
Returns:
A tuple (data, labels, distances), where:
data: dense num_samples * K binary matrix, where K is the
number of tokens in indexed_string. The first row is the
original instance, and thus a row of ones.
labels: num_samples * L matrix, where L is the number of target
labels
distances: cosine distance between the original instance and
each perturbed instance (computed in the binary 'data'
matrix), times 100.
"""
def distance_fn(x):
return sklearn.metrics.pairwise.pairwise_distances(
x, x[0], metric=distance_metric).ravel() * 100
doc_size = indexed_string.num_words()
sample = self.random_state.randint(1, doc_size + 1, num_samples - 1)
data = np.ones((num_samples, doc_size))
data[0] = np.ones(doc_size)
features_range = range(doc_size)
inverse_data = [indexed_string.raw_string()]
for i, size in enumerate(sample, start=1):
inactive = self.random_state.choice(features_range, size,
replace=False)
data[i, inactive] = 0
inverse_data.append(indexed_string.inverse_removing(inactive))
labels = classifier_fn(inverse_data)
distances = distance_fn(sp.sparse.csr_matrix(data))
return data, labels, distances