strexp / modules_srn /resnet_fpn.py
markytools's picture
added strexp
d61b9c7
# --------------------------------------------------------
# Pytorch Faster R-CNN and FPN
# Licensed under The MIT License [see LICENSE for details]
# Written by Zheqi He and Xinlei Chen, Yixiao Ge
# https://github.com/yxgeee/pytorch-FPN/blob/master/lib/nets/resnet_v1.py
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import torch.utils.model_zoo as model_zoo
__all__ = [
'ResNet_FPN',
'ResNet',
'resnet18',
'resnet34',
'resnet50',
'resnet101',
'resnet152']
model_urls = {
'resnet18': 'https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth',
'resnet34': 'https://s3.amazonaws.com/pytorch/models/resnet34-333f7ec4.pth',
'resnet50': 'https://s3.amazonaws.com/pytorch/models/resnet50-19c8e357.pth',
'resnet101': 'https://s3.amazonaws.com/pytorch/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://s3.amazonaws.com/pytorch/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(
inplanes,
planes,
kernel_size=1,
stride=stride,
bias=False) # change
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class BuildBlock(nn.Module):
def __init__(self, planes=512):
super(BuildBlock, self).__init__()
self.planes = planes
# Top-down layers, use nn.ConvTranspose2d to replace
# nn.Conv2d+F.upsample?
self.toplayer1 = nn.Conv2d(
2048,
planes,
kernel_size=1,
stride=1,
padding=0) # Reduce channels
self.toplayer2 = nn.Conv2d(
512, planes, kernel_size=3, stride=1, padding=1)
self.toplayer3 = nn.Conv2d(
512, planes, kernel_size=3, stride=1, padding=1)
# Lateral layers
self.latlayer1 = nn.Conv2d(
1024, planes, kernel_size=1, stride=1, padding=0)
self.latlayer2 = nn.Conv2d(
512, planes, kernel_size=1, stride=1, padding=0)
def _upsample_add(self, x, y):
_, _, H, W = y.size()
return F.upsample(
x,
size=(
H,
W),
mode='bilinear',
align_corners=True) + y
def forward(self, c3, c4, c5):
# Top-down
p5 = self.toplayer1(c5)
p4 = self._upsample_add(p5, self.latlayer1(c4))
p4 = self.toplayer2(p4)
p3 = self._upsample_add(p4, self.latlayer2(c3))
p3 = self.toplayer3(p3)
return p3, p4, p5
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
# the symbol is referred to fots.
# Conv1 /2
self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
# Pool1 /4
# maxpool different from pytorch-resnet, to match tf-faster-rcnn
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(
block, 64, layers[0], stride=1) # Res2 /4
self.layer2 = self._make_layer(
block, 128, layers[1], stride=2) # Res3 /8
self.layer3 = self._make_layer(
block, 256, layers[2], stride=2) # Res4 /16
# use stride 1 for the last conv4 layer (same as tf-faster-rcnn)
self.layer4 = self._make_layer(
block, 512, layers[3], stride=2) # Res5 /32
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def resnet18(pretrained=False):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
def resnet34(pretrained=False):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
def resnet50(pretrained=False):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def resnet101(pretrained=False):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
def resnet152(pretrained=False):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
class ResNet_FPN(nn.Module):
def __init__(self, num_layers=50):
super(ResNet_FPN, self).__init__()
self._num_layers = num_layers
self._layers = {}
self._init_head_tail()
self.out_planes = self.fpn.planes
def forward(self, x):
c2 = self.head1(x)
c3 = self.head2(c2)
c4 = self.head3(c3)
c5 = self.head4(c4)
p3, p4, p5 = self.fpn( c3, c4, c5)
# net_conv = [p2, p3, p4, p5]
# return p2, [x, self.resnet.conv1(x), c2]
return p3
def _init_head_tail(self):
# choose different blocks for different number of layers
if self._num_layers == 50:
self.resnet = resnet50()
elif self._num_layers == 101:
self.resnet = resnet101()
elif self._num_layers == 152:
self.resnet = resnet152()
else:
# other numbers are not supported
raise NotImplementedError
# Build Building Block for FPN
self.fpn = BuildBlock()
self.head1 = nn.Sequential(
self.resnet.conv1,
self.resnet.bn1,
self.resnet.relu,
self.resnet.maxpool,
self.resnet.layer1) # /4
self.head2 = nn.Sequential(self.resnet.layer2) # /8
self.head3 = nn.Sequential(self.resnet.layer3) # /16
self.head4 = nn.Sequential(self.resnet.layer4) # /32
if __name__=='__main__':
model = ResNet_FPN()
x = torch.randn((2,1,64,256))
y = model(x)
print(y.shape)