Spaces:
Build error
Build error
# -------------------------------------------------------- | |
# Pytorch Faster R-CNN and FPN | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Zheqi He and Xinlei Chen, Yixiao Ge | |
# https://github.com/yxgeee/pytorch-FPN/blob/master/lib/nets/resnet_v1.py | |
# -------------------------------------------------------- | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
import torch.utils.model_zoo as model_zoo | |
__all__ = [ | |
'ResNet_FPN', | |
'ResNet', | |
'resnet18', | |
'resnet34', | |
'resnet50', | |
'resnet101', | |
'resnet152'] | |
model_urls = { | |
'resnet18': 'https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth', | |
'resnet34': 'https://s3.amazonaws.com/pytorch/models/resnet34-333f7ec4.pth', | |
'resnet50': 'https://s3.amazonaws.com/pytorch/models/resnet50-19c8e357.pth', | |
'resnet101': 'https://s3.amazonaws.com/pytorch/models/resnet101-5d3b4d8f.pth', | |
'resnet152': 'https://s3.amazonaws.com/pytorch/models/resnet152-b121ed2d.pth', | |
} | |
def conv3x3(in_planes, out_planes, stride=1): | |
"3x3 convolution with padding" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d( | |
inplanes, | |
planes, | |
kernel_size=1, | |
stride=stride, | |
bias=False) # change | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change | |
padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * 4) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class BuildBlock(nn.Module): | |
def __init__(self, planes=512): | |
super(BuildBlock, self).__init__() | |
self.planes = planes | |
# Top-down layers, use nn.ConvTranspose2d to replace | |
# nn.Conv2d+F.upsample? | |
self.toplayer1 = nn.Conv2d( | |
2048, | |
planes, | |
kernel_size=1, | |
stride=1, | |
padding=0) # Reduce channels | |
self.toplayer2 = nn.Conv2d( | |
512, planes, kernel_size=3, stride=1, padding=1) | |
self.toplayer3 = nn.Conv2d( | |
512, planes, kernel_size=3, stride=1, padding=1) | |
# Lateral layers | |
self.latlayer1 = nn.Conv2d( | |
1024, planes, kernel_size=1, stride=1, padding=0) | |
self.latlayer2 = nn.Conv2d( | |
512, planes, kernel_size=1, stride=1, padding=0) | |
def _upsample_add(self, x, y): | |
_, _, H, W = y.size() | |
return F.upsample( | |
x, | |
size=( | |
H, | |
W), | |
mode='bilinear', | |
align_corners=True) + y | |
def forward(self, c3, c4, c5): | |
# Top-down | |
p5 = self.toplayer1(c5) | |
p4 = self._upsample_add(p5, self.latlayer1(c4)) | |
p4 = self.toplayer2(p4) | |
p3 = self._upsample_add(p4, self.latlayer2(c3)) | |
p3 = self.toplayer3(p3) | |
return p3, p4, p5 | |
class ResNet(nn.Module): | |
def __init__(self, block, layers, num_classes=1000): | |
self.inplanes = 64 | |
super(ResNet, self).__init__() | |
# the symbol is referred to fots. | |
# Conv1 /2 | |
self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, | |
bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.relu = nn.ReLU(inplace=True) | |
# Pool1 /4 | |
# maxpool different from pytorch-resnet, to match tf-faster-rcnn | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer( | |
block, 64, layers[0], stride=1) # Res2 /4 | |
self.layer2 = self._make_layer( | |
block, 128, layers[1], stride=2) # Res3 /8 | |
self.layer3 = self._make_layer( | |
block, 256, layers[2], stride=2) # Res4 /16 | |
# use stride 1 for the last conv4 layer (same as tf-faster-rcnn) | |
self.layer4 = self._make_layer( | |
block, 512, layers[3], stride=2) # Res5 /32 | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def resnet18(pretrained=False): | |
"""Constructs a ResNet-18 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(BasicBlock, [2, 2, 2, 2]) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) | |
return model | |
def resnet34(pretrained=False): | |
"""Constructs a ResNet-34 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(BasicBlock, [3, 4, 6, 3]) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) | |
return model | |
def resnet50(pretrained=False): | |
"""Constructs a ResNet-50 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 6, 3]) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) | |
return model | |
def resnet101(pretrained=False): | |
"""Constructs a ResNet-101 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 23, 3]) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) | |
return model | |
def resnet152(pretrained=False): | |
"""Constructs a ResNet-152 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 8, 36, 3]) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) | |
return model | |
class ResNet_FPN(nn.Module): | |
def __init__(self, num_layers=50): | |
super(ResNet_FPN, self).__init__() | |
self._num_layers = num_layers | |
self._layers = {} | |
self._init_head_tail() | |
self.out_planes = self.fpn.planes | |
def forward(self, x): | |
c2 = self.head1(x) | |
c3 = self.head2(c2) | |
c4 = self.head3(c3) | |
c5 = self.head4(c4) | |
p3, p4, p5 = self.fpn( c3, c4, c5) | |
# net_conv = [p2, p3, p4, p5] | |
# return p2, [x, self.resnet.conv1(x), c2] | |
return p3 | |
def _init_head_tail(self): | |
# choose different blocks for different number of layers | |
if self._num_layers == 50: | |
self.resnet = resnet50() | |
elif self._num_layers == 101: | |
self.resnet = resnet101() | |
elif self._num_layers == 152: | |
self.resnet = resnet152() | |
else: | |
# other numbers are not supported | |
raise NotImplementedError | |
# Build Building Block for FPN | |
self.fpn = BuildBlock() | |
self.head1 = nn.Sequential( | |
self.resnet.conv1, | |
self.resnet.bn1, | |
self.resnet.relu, | |
self.resnet.maxpool, | |
self.resnet.layer1) # /4 | |
self.head2 = nn.Sequential(self.resnet.layer2) # /8 | |
self.head3 = nn.Sequential(self.resnet.layer3) # /16 | |
self.head4 = nn.Sequential(self.resnet.layer4) # /32 | |
if __name__=='__main__': | |
model = ResNet_FPN() | |
x = torch.randn((2,1,64,256)) | |
y = model(x) | |
print(y.shape) |