Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,12 @@ from sklearn.decomposition import PCA
|
|
11 |
|
12 |
# # Define the prediction function
|
13 |
def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
14 |
-
features =
|
|
|
|
|
|
|
|
|
|
|
15 |
fixed_features = cleaning_features(features)
|
16 |
# prediction = model.predict(features)
|
17 |
# prediction = 1
|
@@ -25,11 +30,13 @@ def cleaning_features(data):
|
|
25 |
numeric_cols = ['age', 'educational-num', 'hours-per-week']
|
26 |
columns_to_encode = ['race','marital-status','relationship']
|
27 |
|
|
|
28 |
# 1. Scale numerical features
|
29 |
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])
|
30 |
|
31 |
# 2. Label encode gender and income
|
32 |
data['gender'] = le.fit_transform(data['gender'])
|
|
|
33 |
|
34 |
# 3. One-hot encode race
|
35 |
for N in columns_to_encode:
|
|
|
11 |
|
12 |
# # Define the prediction function
|
13 |
def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
14 |
+
features = [age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country]
|
15 |
+
columns = [
|
16 |
+
"age", "workclass", "education", "marital_status", "occupation",
|
17 |
+
"relationship", "race", "gender", "capital_gain", "capital_loss",
|
18 |
+
"hours_per_week", "native_country"]
|
19 |
+
df = pd.DataFrame(features, columns=columns)
|
20 |
fixed_features = cleaning_features(features)
|
21 |
# prediction = model.predict(features)
|
22 |
# prediction = 1
|
|
|
30 |
numeric_cols = ['age', 'educational-num', 'hours-per-week']
|
31 |
columns_to_encode = ['race','marital-status','relationship']
|
32 |
|
33 |
+
|
34 |
# 1. Scale numerical features
|
35 |
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])
|
36 |
|
37 |
# 2. Label encode gender and income
|
38 |
data['gender'] = le.fit_transform(data['gender'])
|
39 |
+
data['education-num'] = le.fit_transform(data['education'])
|
40 |
|
41 |
# 3. One-hot encode race
|
42 |
for N in columns_to_encode:
|