Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -54,6 +54,7 @@ def cleaning_features(data):
|
|
54 |
}
|
55 |
|
56 |
gender_mapping = {"Male":1,"Female":0}
|
|
|
57 |
|
58 |
numeric_cols = ['age', 'educational-num', 'hours-per-week']
|
59 |
columns_to_encode = ['race','marital-status','relationship']
|
@@ -62,13 +63,11 @@ def cleaning_features(data):
|
|
62 |
data['workclass'] = le.fit_transform(data['workclass'])
|
63 |
data['occupation'] = le.fit_transform(data['occupation'])
|
64 |
data['gender'] = data['gender'].map(gender_mapping)
|
|
|
65 |
data['educational-num'] = data['educational-num'].map(education_num_mapping)
|
66 |
|
67 |
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])
|
68 |
-
|
69 |
-
# Binarize native country
|
70 |
-
data['native-country'] = data['native-country'].apply(lambda x: x == 'United-States')
|
71 |
-
data['native-country'] = data['native-country'].astype(int)
|
72 |
#data = pca(data)
|
73 |
return data
|
74 |
|
|
|
54 |
}
|
55 |
|
56 |
gender_mapping = {"Male":1,"Female":0}
|
57 |
+
country_mapping = {"United-States":1,"Other":0}
|
58 |
|
59 |
numeric_cols = ['age', 'educational-num', 'hours-per-week']
|
60 |
columns_to_encode = ['race','marital-status','relationship']
|
|
|
63 |
data['workclass'] = le.fit_transform(data['workclass'])
|
64 |
data['occupation'] = le.fit_transform(data['occupation'])
|
65 |
data['gender'] = data['gender'].map(gender_mapping)
|
66 |
+
data['native-country'] = data['native-country'].map(country_mapping)
|
67 |
data['educational-num'] = data['educational-num'].map(education_num_mapping)
|
68 |
|
69 |
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])
|
70 |
+
|
|
|
|
|
|
|
71 |
#data = pca(data)
|
72 |
return data
|
73 |
|