Spaces:
Sleeping
Sleeping
File size: 4,312 Bytes
3671cba ee259c3 3671cba eac0454 1fb03fe c4f7382 2fb9f93 267df2c 3671cba 697988f c4f7382 d687e0e 1fb03fe 2fb9f93 eac0454 2fb9f93 eac0454 2fb9f93 eac0454 99b4a85 9bd3977 e896716 2fb9f93 267df2c 1fb03fe bb3ae4c cb86663 c4f7382 e896716 c4f7382 1fb03fe 2fb9f93 c4f7382 1fb03fe 2fb9f93 c4f7382 1fb03fe c4f7382 e896716 9db1d02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
from fastapi import FastAPI
import uvicorn
import pandas as pd
import numpy as np
import pickle
import rasterio
import h5py
from skimage.morphology import disk
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
app = FastAPI()
#Endpoints
#Root endpoints
@app.get("/")
def root():
return {"API": "Hail Docker Data"}
def geocode_address(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent='GTA Lookup')
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=2)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return lat, lon
def get_hail_data(address, start_date, end_date, radius_miles, get_max):
# resolution=1 # mrms 1 and hrrr is 3
# radius = int(np.ceil(radius_miles*1.6/resolution))
# start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d')
# end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d')
# date_years = pd.date_range(start=start_date, end=end_date, freq='M')
# date_range_days = pd.date_range(start_date, end_date)
# years = list(set([d.year for d in date_years]))
# if len(years) == 0:
# years = [pd.Timestamp(start_date).year]
# Geocode Address
try:
lat, lon= geocode_address(address)
except:
lat, lon=None
# Convert Lat Lon to row & col on Array
try:
transform = pickle.load(open('Data/transform_mrms.pkl', 'rb'))
row, col = rasterio.transform.rowcol(transform, lon, lat)
except:
row=col=None
# files = [
# 'Data/2023_hail.h5',
# 'Data/2022_hail.h5',
# 'Data/2021_hail.h5',
# 'Data/2020_hail.h5'
# ]
# files_choosen = [i for i in files if any(i for j in years if str(j) in i)]
# # Query and Collect H5 Data
# all_data = []
# all_dates = []
# for file in files_choosen:
# with h5py.File(file, 'r') as f:
# # Get Dates from H5
# dates = f['dates'][:]
# date_idx = np.where((dates >= int(start_date))
# & (dates <= int(end_date)))[0]
# # Select Data by Date and Radius
# dates = dates[date_idx]
# data = f['hail'][date_idx, row-radius_miles:row +
# radius_miles+1, col-radius_miles:col+radius_miles+1]
# all_data.append(data)
# all_dates.append(dates)
# data_all = np.vstack(all_data)
# dates_all = np.concatenate(all_dates)
# # Convert to Inches
# data_mat = np.where(data_all < 0, 0, data_all)*0.0393701
# # Get Radius of Data
# disk_mask = np.where(disk(radius_miles) == 1, True, False)
# data_mat = np.where(disk_mask, data_mat, -1).round(3)
# # Process to DataFrame
# # Find Max of Data
# if get_max == True:
# data_max = np.max(data_mat, axis=(1, 2))
# df_data = pd.DataFrame({'Date': dates_all,
# 'Hail_max': data_max})
# # Get all Data
# else:
# data_all = list(data_mat)
# df_data = pd.DataFrame({'Date': dates_all,
# 'Hail_all': data_all})
# df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d')
# df_data = df_data.set_index('Date')
# df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(
# columns={'index': 'Date'})
# df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d')
# return df_data
return lat, lon,row, col
@app.get('/Hail_Docker_Data')
async def predict(address: str, start_date: str, end_date: str, radius_miles: int, get_max: bool):
try:
results = get_hail_data(address, start_date,
end_date, radius_miles, get_max)
except:
results = pd.DataFrame({'Date': ['error'], 'Hail_max': ['error']})
# return results.to_json()
return results
|