Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
import uvicorn | |
from geopy.extra.rate_limiter import RateLimiter | |
from geopy.geocoders import Nominatim | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import rasterio | |
import h5py | |
from skimage.morphology import disk | |
app = FastAPI() | |
#Endpoints | |
#Root endpoints | |
def root(): | |
return {"API": "Hail Docker Data"} | |
def geocode_address(address): | |
try: | |
address2 = address.replace(' ', '+').replace(',', '%2C') | |
df = pd.read_json( | |
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json') | |
results = df.iloc[:1, 0][0][0]['coordinates'] | |
lat, lon = results['y'], results['x'] | |
except: | |
geolocator = Nominatim(user_agent='GTA Lookup') | |
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=2) | |
location = geolocator.geocode(address) | |
lat, lon = location.latitude, location.longitude | |
return lat, lon | |
def get_hail_data(address, start_date,end_date,radius_miles): | |
start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d') | |
end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d') | |
date_years = pd.date_range(start=start_date, end=end_date, freq='M') | |
years = list(set([d.year for d in date_years])) | |
if len(years)==0: | |
years=[pd.Timestamp(start_date).year] | |
# Geocode Address | |
lat, lon= geocode_address(address) | |
# Convert Lat Lon to row & col on Array | |
transform = pickle.load(open('Data/transform_mrms.pkl', 'rb')) | |
row, col = rasterio.transform.rowcol(transform, lon, lat) | |
files = [ | |
'Data/2023_hail.h5', | |
'Data/2022_hail.h5', | |
'Data/2021_hail.h5', | |
'Data/2020_hail.h5' | |
] | |
files_choosen=[i for i in files if any(i for j in years if str(j) in i)] | |
# Query and Collect H5 Data | |
all_data=[] | |
all_dates=[] | |
for file in files_choosen: | |
with h5py.File(file, 'r') as f: | |
# Get Dates from H5 | |
dates = f['dates'][:] | |
date_idx=np.where((dates>=int(start_date)) & (dates<=int(end_date)) )[0] | |
# Select Data by Date and Radius | |
dates=dates[date_idx] | |
data = f['hail'][date_idx, row-radius_miles:row + | |
radius_miles+1, col-radius_miles:col+radius_miles+1] | |
all_data.append(data) | |
all_dates.append(dates) | |
data_all=np.vstack(all_data) | |
dates_all=np.concatenate(all_dates) | |
# Convert to Inches | |
data_mat = np.where(data_all < 0, 0, data_all)*0.0393701 | |
# Get Radius of Data | |
disk_mask = np.where(disk(radius_miles)==1,True, False) | |
data_mat = np.where(disk_mask, data_mat, -1) | |
# Find Max of Data | |
data_max = np.max(data_mat, axis=(1, 2)).round(3) | |
# Process to DataFrame | |
date_range_days = pd.date_range(start_date,end_date) | |
df_data=pd.DataFrame({'Date':dates_all, | |
'Hail_max':data_max}) | |
df_data['Date']=pd.to_datetime(df_data['Date'],format='%Y%m%d') | |
df_data=df_data.set_index('Date') | |
df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(columns={'index': 'Date'}) | |
df_data['Date']=df_data['Date'].dt.strftime('%Y-%m-%d') | |
return df_data | |
async def predict(address: str, start_date: int,end_date: int, radius_miles:int ): | |
try: | |
results = get_hail_data(address, start_date,end_date, radius_miles) | |
except: | |
results=pd.DataFrame({'Date':['error'],'df_data':['error']}) | |
return results.to_json() | |