mattritchey's picture
Update main.py
825e1ac verified
raw
history blame
3.67 kB
from fastapi import FastAPI
import uvicorn
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
import pandas as pd
import numpy as np
import pickle
import rasterio
import h5py
from skimage.morphology import disk
app = FastAPI()
#Endpoints
#Root endpoints
@app.get("/")
def root():
return {"API": "Hail Docker Data"}
def geocode_address(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent='GTA Lookup')
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=2)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return lat, lon
def get_hail_data(address, start_date,end_date,radius_miles):
start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d')
end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d')
date_years = pd.date_range(start=start_date, end=end_date, freq='M')
years = list(set([d.year for d in date_years]))
if len(years)==0:
years=[pd.Timestamp(start_date).year]
# Geocode Address
lat, lon= geocode_address(address)
# Convert Lat Lon to row & col on Array
transform = pickle.load(open('Data/transform_mrms.pkl', 'rb'))
row, col = rasterio.transform.rowcol(transform, lon, lat)
files = [
'Data/2023_hail.h5',
'Data/2022_hail.h5',
'Data/2021_hail.h5',
'Data/2020_hail.h5'
]
files_choosen=[i for i in files if any(i for j in years if str(j) in i)]
# Query and Collect H5 Data
all_data=[]
all_dates=[]
for file in files_choosen:
with h5py.File(file, 'r') as f:
# Get Dates from H5
dates = f['dates'][:]
date_idx=np.where((dates>=int(start_date)) & (dates<=int(end_date)) )[0]
# Select Data by Date and Radius
dates=dates[date_idx]
data = f['hail'][date_idx, row-radius_miles:row +
radius_miles+1, col-radius_miles:col+radius_miles+1]
all_data.append(data)
all_dates.append(dates)
data_all=np.vstack(all_data)
dates_all=np.concatenate(all_dates)
# Convert to Inches
data_mat = np.where(data_all < 0, 0, data_all)*0.0393701
# Get Radius of Data
disk_mask = np.where(disk(radius_miles)==1,True, False)
data_mat = np.where(disk_mask, data_mat, -1)
# Find Max of Data
data_max = np.max(data_mat, axis=(1, 2)).round(3)
# Process to DataFrame
date_range_days = pd.date_range(start_date,end_date)
df_data=pd.DataFrame({'Date':dates_all,
'Hail_max':data_max})
df_data['Date']=pd.to_datetime(df_data['Date'],format='%Y%m%d')
df_data=df_data.set_index('Date')
df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(columns={'index': 'Date'})
df_data['Date']=df_data['Date'].dt.strftime('%Y-%m-%d')
return df_data
@app.get('/Hail_Docker_Data')
async def predict(address: str, start_date: int,end_date: int, radius_miles:int ):
try:
results = get_hail_data(address, start_date,end_date, radius_miles)
except:
results=pd.DataFrame({'Date':['error'],'df_data':['error']})
return results.to_json()