text-aug-demo / app.py
maximuspowers's picture
Update app.py
a2ce6e9 verified
raw
history blame
1.44 kB
import gradio as gr
import nlpaug.augmenter.word as naw
import nlpaug.augmenter.char as nac
import nlpaug.augmenter.sentence as nas
import nltk
nltk.download('averaged_perceptron_tagger')
nltk.download('wordnet')
# Function for NLP augmentation
def augment_text(text, method):
if method == "Synonym Replacement":
aug = naw.SynonymAug(aug_src="wordnet", aug_max=3)
elif method == "Word Embedding Substitution":
aug = naw.WordEmbsAug(model_type='word2vec', model_path="GoogleNews-vectors-negative300.bin", action="substitute")
elif method == "Contextual Word Insertion":
aug = naw.ContextualWordEmbsAug(model_path="bert-base-uncased", action="insert")
elif method == "Back Translation":
aug = naw.BackTranslationAug(from_model_name='facebook/wmt19-en-de', to_model_name='facebook/wmt19-de-en')
augmented_text = aug.augment(text)
return augmented_text
# Gradio Interface
def nlp_augmentor_interface(text, method):
augmented_text = augment_text(text, method)
return augmented_text
iface = gr.Interface(
fn=nlp_augmentor_interface,
inputs=[
gr.Textbox(lines=2, placeholder="Enter sentence to augment here..."),
gr.Radio(["Synonym Replacement", "Word Embedding Substitution", "Contextual Word Insertion", "Back Translation"], label="Augmentation Method")
],
outputs="text",
title="NLP Text Augmentation with Gradio"
)
iface.launch()