1 / app.py
mayf's picture
Update app.py
121e41f verified
raw
history blame
2.71 kB
# app.py
import streamlit as st
from PIL import Image
from transformers import pipeline
from gtts import gTTS
import tempfile
# —––––––– Page config
st.set_page_config(page_title="Storyteller for Kids", layout="centered")
st.title("🖼️ ➡️ 📖 Interactive Storyteller")
# —––––––– Load & warm pipelines
@st.cache_resource
def load_pipelines():
# 1) BLIP-base for captions
captioner = pipeline(
"image-to-text",
model="Salesforce/blip-image-captioning-base",
device=0 # set to -1 if you only have CPU
)
# 2) DeepSeek-R1-Distill (Qwen-1.5B) for stories
ds_storyteller = pipeline(
"text-generation",
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
trust_remote_code=True,
device=0
)
# Warm-up both so the first real request is faster
dummy = Image.new("RGB", (384, 384), color=(128, 128, 128))
captioner(dummy)
ds_storyteller("Warm up", max_new_tokens=1)
return captioner, ds_storyteller
captioner, ds_storyteller = load_pipelines()
# —––––––– Main UI
uploaded = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"])
if uploaded:
# 1) Preprocess & display
image = Image.open(uploaded).convert("RGB")
image = image.resize((384, 384), Image.LANCZOS)
st.image(image, caption="Your image", use_container_width=True)
# 2) Generate caption
with st.spinner("🔍 Generating caption..."):
cap = captioner(image)[0]["generated_text"].strip()
st.markdown(f"**Caption:** {cap}")
# 3) Build prompt
prompt = (
f"Here is an image description: “{cap}”.\n"
"Write an 80–100 word playful story for 3–10 year-old children that:\n"
"1) Describes the scene and main subject.\n"
"2) Explains what it’s doing and how it feels.\n"
"3) Concludes with a fun, imaginative ending.\n\n"
"Story:"
)
# 4) Generate story via DeepSeek
with st.spinner("✍️ Generating story with DeepSeek..."):
out = ds_storyteller(
prompt,
max_new_tokens=120,
do_sample=True,
temperature=0.7,
top_p=0.9,
top_k=50,
repetition_penalty=1.2,
no_repeat_ngram_size=3
)
story = out[0]["generated_text"].strip()
st.markdown("**Story:**")
st.write(story)
# 5) Text-to-Speech via gTTS
with st.spinner("🔊 Converting to speech..."):
tts = gTTS(text=story, lang="en")
tmp = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
tts.write_to_fp(tmp)
tmp.flush()
st.audio(tmp.name, format="audio/mp3")