1 / app.py
mayf's picture
Update app.py
2ecaff0 verified
raw
history blame
3.8 kB
import os
import numpy as np
import pandas as pd
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from keybert import KeyBERT
# ─── Sentiment & Keyword Models ─────────────────────────────────────────────
@st.cache_resource
def load_sentiment_pipeline():
model_name = "mayf/amazon_reviews_bert_ft"
tok = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
mdl = AutoModelForSequenceClassification.from_pretrained(model_name, use_auth_token=True)
return pipeline(
"sentiment-analysis",
model=mdl,
tokenizer=tok,
return_all_scores=True
)
@st.cache_resource
def load_keybert_model():
return KeyBERT(model="all-MiniLM-L6-v2")
# ─── FLAN-T5 Generation Pipeline ────────────────────────────────────────────
@st.cache_resource
def load_flant5_pipeline():
# High-level helper for text2text generation
return pipeline(
"text2text-generation",
model="google/flan-t5-base",
tokenizer="google/flan-t5-base"
)
LABEL_MAP = {
"LABEL_0": "Very Negative",
"LABEL_1": "Negative",
"LABEL_2": "Neutral",
"LABEL_3": "Positive",
"LABEL_4": "Very Positive"
}
def main():
st.title("📊 Amazon Review Analyzer")
review = st.text_area("Enter your review:")
if not st.button("Analyze Review"):
return
if not review:
st.warning("Please enter a review to analyze.")
return
progress = st.progress(0)
# Load models
progress.text("Loading models...")
sentiment_pipeline = load_sentiment_pipeline()
kw_model = load_keybert_model()
generation_pipeline = load_flant5_pipeline()
progress.progress(20)
# Sentiment
progress.text("Analyzing sentiment...")
raw_scores = sentiment_pipeline(review)[0]
sentiment_results = {LABEL_MAP[item['label']]: float(item['score']) for item in raw_scores}
progress.progress(40)
# Keywords
progress.text("Extracting keywords...")
keywords = kw_model.extract_keywords(
review,
keyphrase_ngram_range=(1, 2),
stop_words="english",
top_n=3
)
progress.progress(60)
# Display
col1, col2 = st.columns(2)
with col1:
st.subheader("Sentiment Scores")
st.json({k: round(v, 4) for k, v in sentiment_results.items()})
with col2:
st.subheader("Top 3 Keywords")
for kw, score in keywords:
st.write(f"• {kw} ({score:.4f})")
# Chart
progress.text("Rendering chart...")
df_scores = pd.DataFrame.from_dict(sentiment_results, orient='index', columns=['score'])
df_scores.index.name = 'Sentiment'
st.bar_chart(df_scores)
progress.progress(80)
# Highlight highest sentiment
max_label, max_score = max(sentiment_results.items(), key=lambda x: x[1])
st.markdown(f"**Highest Sentiment:** **{max_label}** ({max_score:.4f})")
# FLAN-T5 Analysis & Suggestions
progress.text("Generating insights...")
prompt = f"""
You are an analytical amazon feedback expert.
Review: \"{review}\"
Sentiment Scores: {sentiment_results}
Top Keywords: {[kw for kw, _ in keywords]}
Tasks:
1. Analysis: Write a concise paragraph (3 sentences) interpreting customer sentiment by combining the scores and keywords.
2. Recommendations: Three separate paragraphs with actionable suggestions (max 30 words each).
"""
output = generation_pipeline(prompt, max_length=200, do_sample=False)[0]['generated_text']
st.markdown(output)
progress.progress(100)
progress.text("Done!")
if __name__ == "__main__":
main()