1 / app.py
mayf's picture
Update app.py
c7c90ac verified
raw
history blame
4.28 kB
import os
import numpy as np
import pandas as pd
import streamlit as st
from huggingface_hub import login
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from keybert import KeyBERT
from openai import AzureOpenAI # new
# ─── Azure OpenAI Client ─────────────────────────────────────────────────────
openai_client = AzureOpenAI(
api_key = "fbca46bfd8814334be46a2e5c323904c", # use your key here
api_version = "2023-05-15", # apparently HKUST uses a deprecated version
azure_endpoint = "https://hkust.azure-api.net" # per HKUST instructions
)
# ─── (your existing cache decorators) ────────────────────────────────────────
@st.cache_resource
def load_sentiment_pipeline():
model_name = "mayf/amazon_reviews_bert_ft"
tok = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
mdl = AutoModelForSequenceClassification.from_pretrained(model_name, use_auth_token=True)
return pipeline(
"sentiment-analysis",
model=mdl,
tokenizer=tok,
return_all_scores=True
)
@st.cache_resource
def load_keybert_model():
return KeyBERT(model="all-MiniLM-L6-v2")
def main():
st.title("📊 Review Sentiment & Keyword Analyzer + GPT Insights")
# ─── Inputs & Models ──────────────────────────────────────────────────────
review = st.text_area("Enter your review:")
if not st.button("Analyze Review"):
return
if not review:
st.warning("Please enter a review to analyze.")
return
# ─── Sentiment & Keywords ─────────────────────────────────────────────────
sentiment_pipeline = load_sentiment_pipeline()
kw_model = load_keybert_model()
scores = sentiment_pipeline(review)[0]
sentiment_results = {item['label']: float(item['score']) for item in scores}
st.subheader("Sentiment Scores")
st.json({k: round(v, 4) for k, v in sentiment_results.items()})
keywords = kw_model.extract_keywords(
review,
keyphrase_ngram_range=(1, 2),
stop_words="english",
top_n=3
)
st.subheader("Top 3 Keywords")
for kw, score in keywords:
st.write(f"- **{kw}** (Score: {score:.4f})")
# ─── Determine Highest Sentiment ───────────────────────────────────────────
max_label, max_score = max(sentiment_results.items(), key=lambda x: x[1])
st.subheader("Highest Sentiment")
st.write(f"{max_label} (Score: {max_score:.4f})")
# ─── GPT-Driven Analysis & Suggestions ────────────────────────────────────
st.subheader("GPT Analysis & Seller Suggestions")
# build a single text prompt for GPT
prompt = f"""
You are a helpful assistant for e-commerce sellers.
Here is a product review, its sentiment breakdown, and the top keywords:
Review:
\"\"\"{review}\"\"\"
Sentiment scores:
{sentiment_results}
Top keywords:
{[kw for kw, _ in keywords]}
First, provide a one-paragraph professional analysis of what the customer feels and why (combine sentiment + keywords).
Then, give 3 detailed, actionable suggestions the seller can implement to improve future reviews or address the feedback.
"""
# call Azure OpenAI
response = openai_client.chat.completions.create(
model="gpt-35-turbo", # ← use your deployed model name here
messages=[
{"role": "system", "content": "You are a product-feedback analyst."},
{"role": "user", "content": prompt}
],
temperature=0.7,
max_tokens=400
)
# display GPT’s reply
gpt_reply = response.choices[0].message.content
st.markdown(gpt_reply)
if __name__ == "__main__":
# make sure your env vars are set: AZURE_OPENAI_KEY, AZURE_OPENAI_ENDPOINT
main()