Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"LABEL_4": "Very Positive"
|
2 |
}
|
3 |
|
@@ -73,7 +124,8 @@ Customer Review:
|
|
73 |
|
74 |
Instructions: Analyze the feedback and provide three distinct, actionable improvement recommendations. For each, include a concise title and a detailed explanation in 5–7 sentences, plus a bullet list of 3–5 execution steps and a measure of impact.
|
75 |
|
76 |
-
|
|
|
77 |
response = generation_pipeline(prompt)
|
78 |
detailed = response[0]["generated_text"]
|
79 |
st.markdown(detailed)
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
from transformers import (
|
6 |
+
pipeline,
|
7 |
+
AutoTokenizer,
|
8 |
+
AutoModelForSequenceClassification,
|
9 |
+
AutoModelForSeq2SeqLM
|
10 |
+
)
|
11 |
+
from keybert import KeyBERT
|
12 |
+
|
13 |
+
# ─── Sentiment & Keyword Models ─────────────────────────────────────────────
|
14 |
+
@st.cache_resource
|
15 |
+
def load_sentiment_pipeline():
|
16 |
+
model_name = "mayf/amazon_reviews_bert_ft"
|
17 |
+
tok = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
|
18 |
+
mdl = AutoModelForSequenceClassification.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
use_auth_token=True
|
21 |
+
)
|
22 |
+
return pipeline(
|
23 |
+
"sentiment-analysis",
|
24 |
+
model=mdl,
|
25 |
+
tokenizer=tok,
|
26 |
+
return_all_scores=True
|
27 |
+
)
|
28 |
+
|
29 |
+
@st.cache_resource
|
30 |
+
def load_keybert_model():
|
31 |
+
return KeyBERT(model="all-MiniLM-L6-v2")
|
32 |
+
|
33 |
+
# ─── FLAN-T5 Generation Pipeline ────────────────────────────────────────────
|
34 |
+
@st.cache_resource
|
35 |
+
def load_flant5_pipeline():
|
36 |
+
seq_tok = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
37 |
+
seq_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
|
38 |
+
return pipeline(
|
39 |
+
"text2text-generation",
|
40 |
+
model=seq_model,
|
41 |
+
tokenizer=seq_tok,
|
42 |
+
max_new_tokens=300,
|
43 |
+
do_sample=True,
|
44 |
+
temperature=0.7
|
45 |
+
)
|
46 |
+
|
47 |
+
LABEL_MAP = {
|
48 |
+
"LABEL_0": "Very Negative",
|
49 |
+
"LABEL_1": "Negative",
|
50 |
+
"LABEL_2": "Neutral",
|
51 |
+
"LABEL_3": "Positive",
|
52 |
"LABEL_4": "Very Positive"
|
53 |
}
|
54 |
|
|
|
124 |
|
125 |
Instructions: Analyze the feedback and provide three distinct, actionable improvement recommendations. For each, include a concise title and a detailed explanation in 5–7 sentences, plus a bullet list of 3–5 execution steps and a measure of impact.
|
126 |
|
127 |
+
Output only the three numbered recommendations (1–3), each with its title, detailed explanation, steps, and impact measure.
|
128 |
+
"""
|
129 |
response = generation_pipeline(prompt)
|
130 |
detailed = response[0]["generated_text"]
|
131 |
st.markdown(detailed)
|