Update app.py
Browse files
app.py
CHANGED
@@ -38,10 +38,7 @@ def load_flant5_pipeline():
|
|
38 |
return pipeline(
|
39 |
"text2text-generation",
|
40 |
model=seq_model,
|
41 |
-
tokenizer=seq_tok
|
42 |
-
max_new_tokens=300,
|
43 |
-
do_sample=True,
|
44 |
-
temperature=0.7
|
45 |
)
|
46 |
|
47 |
LABEL_MAP = {
|
@@ -117,7 +114,7 @@ def main():
|
|
117 |
progress.text("Generating detailed recommendations...")
|
118 |
if max_label in ["Very Negative", "Negative", "Neutral"]:
|
119 |
prompt = f"""
|
120 |
-
You are a
|
121 |
|
122 |
Customer Review:
|
123 |
"{review}"
|
@@ -126,7 +123,16 @@ Instructions: Analyze the feedback and provide three distinct, actionable improv
|
|
126 |
|
127 |
Output only the three numbered recommendations (1–3), each with its title, detailed explanation, steps, and impact measure.
|
128 |
"""
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
detailed = response[0]["generated_text"]
|
131 |
st.markdown(detailed)
|
132 |
else:
|
@@ -139,4 +145,3 @@ Output only the three numbered recommendations (1–3), each with its title, det
|
|
139 |
|
140 |
if __name__ == "__main__":
|
141 |
main()
|
142 |
-
|
|
|
38 |
return pipeline(
|
39 |
"text2text-generation",
|
40 |
model=seq_model,
|
41 |
+
tokenizer=seq_tok
|
|
|
|
|
|
|
42 |
)
|
43 |
|
44 |
LABEL_MAP = {
|
|
|
114 |
progress.text("Generating detailed recommendations...")
|
115 |
if max_label in ["Very Negative", "Negative", "Neutral"]:
|
116 |
prompt = f"""
|
117 |
+
You are a product quality and customer experience specialist at an e-commerce food retailer.
|
118 |
|
119 |
Customer Review:
|
120 |
"{review}"
|
|
|
123 |
|
124 |
Output only the three numbered recommendations (1–3), each with its title, detailed explanation, steps, and impact measure.
|
125 |
"""
|
126 |
+
# Ensure longer outputs by specifying generation parameters
|
127 |
+
response = generation_pipeline(
|
128 |
+
prompt,
|
129 |
+
max_new_tokens=300,
|
130 |
+
min_length=200,
|
131 |
+
do_sample=True,
|
132 |
+
temperature=0.7,
|
133 |
+
top_p=0.9,
|
134 |
+
no_repeat_ngram_size=2
|
135 |
+
)
|
136 |
detailed = response[0]["generated_text"]
|
137 |
st.markdown(detailed)
|
138 |
else:
|
|
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
main()
|
|