File size: 7,491 Bytes
985cc7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
## Prepare datasets
It is recommended to symlink the dataset root to `$MMSEGMENTATION/data`.
If your folder structure is different, you may need to change the corresponding paths in config files.
```none
mmsegmentation
βββ mmseg
βββ tools
βββ configs
βββ data
β βββ cityscapes
β β βββ leftImg8bit
β β β βββ train
β β β βββ val
β β βββ gtFine
β β β βββ train
β β β βββ val
β βββ VOCdevkit
β β βββ VOC2012
β β β βββ JPEGImages
β β β βββ SegmentationClass
β β β βββ ImageSets
β β β β βββ Segmentation
β β βββ VOC2010
β β β βββ JPEGImages
β β β βββ SegmentationClassContext
β β β βββ ImageSets
β β β β βββ SegmentationContext
β β β β β βββ train.txt
β β β β β βββ val.txt
β β β βββ trainval_merged.json
β β βββ VOCaug
β β β βββ dataset
β β β β βββ cls
β βββ ade
β β βββ ADEChallengeData2016
β β β βββ annotations
β β β β βββ training
β β β β βββ validation
β β β βββ images
β β β β βββ training
β β β β βββ validation
β βββ CHASE_DB1
β β βββ images
β β β βββ training
β β β βββ validation
β β βββ annotations
β β β βββ training
β β β βββ validation
β βββ DRIVE
β β βββ images
β β β βββ training
β β β βββ validation
β β βββ annotations
β β β βββ training
β β β βββ validation
β βββ HRF
β β βββ images
β β β βββ training
β β β βββ validation
β β βββ annotations
β β β βββ training
β β β βββ validation
β βββ STARE
β β βββ images
β β β βββ training
β β β βββ validation
β β βββ annotations
β β β βββ training
β β β βββ validation
```
### Cityscapes
The data could be found [here](https://www.cityscapes-dataset.com/downloads/) after registration.
By convention, `**labelTrainIds.png` are used for cityscapes training.
We provided a [scripts](https://github.com/open-mmlab/mmsegmentation/blob/master/tools/convert_datasets/cityscapes.py) based on [cityscapesscripts](https://github.com/mcordts/cityscapesScripts)
to generate `**labelTrainIds.png`.
```shell
# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/cityscapes.py data/cityscapes --nproc 8
```
### Pascal VOC
Pascal VOC 2012 could be downloaded from [here](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar).
Beside, most recent works on Pascal VOC dataset usually exploit extra augmentation data, which could be found [here](http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz).
If you would like to use augmented VOC dataset, please run following command to convert augmentation annotations into proper format.
```shell
# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/voc_aug.py data/VOCdevkit data/VOCdevkit/VOCaug --nproc 8
```
Please refer to [concat dataset](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/tutorials/new_dataset.md#concatenate-dataset) for details about how to concatenate them and train them together.
### ADE20K
The training and validation set of ADE20K could be download from this [link](http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip).
We may also download test set from [here](http://data.csail.mit.edu/places/ADEchallenge/release_test.zip).
### Pascal Context
The training and validation set of Pascal Context could be download from [here](http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar). You may also download test set from [here](http://host.robots.ox.ac.uk:8080/eval/downloads/VOC2010test.tar) after registration.
To split the training and validation set from original dataset, you may download trainval_merged.json from [here](https://codalabuser.blob.core.windows.net/public/trainval_merged.json).
If you would like to use Pascal Context dataset, please install [Detail](https://github.com/zhanghang1989/detail-api) and then run the following command to convert annotations into proper format.
```shell
python tools/convert_datasets/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json
```
### CHASE DB1
The training and validation set of CHASE DB1 could be download from [here](https://staffnet.kingston.ac.uk/~ku15565/CHASE_DB1/assets/CHASEDB1.zip).
To convert CHASE DB1 dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/chase_db1.py /path/to/CHASEDB1.zip
```
The script will make directory structure automatically.
### DRIVE
The training and validation set of DRIVE could be download from [here](https://drive.grand-challenge.org/). Before that, you should register an account. Currently '1st_manual' is not provided officially.
To convert DRIVE dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/drive.py /path/to/training.zip /path/to/test.zip
```
The script will make directory structure automatically.
### HRF
First, download [healthy.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy.zip), [glaucoma.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma.zip), [diabetic_retinopathy.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy.zip), [healthy_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy_manualsegm.zip), [glaucoma_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma_manualsegm.zip) and [diabetic_retinopathy_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy_manualsegm.zip).
To convert HRF dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/hrf.py /path/to/healthy.zip /path/to/healthy_manualsegm.zip /path/to/glaucoma.zip /path/to/glaucoma_manualsegm.zip /path/to/diabetic_retinopathy.zip /path/to/diabetic_retinopathy_manualsegm.zip
```
The script will make directory structure automatically.
### STARE
First, download [stare-images.tar](http://cecas.clemson.edu/~ahoover/stare/probing/stare-images.tar), [labels-ah.tar](http://cecas.clemson.edu/~ahoover/stare/probing/labels-ah.tar) and [labels-vk.tar](http://cecas.clemson.edu/~ahoover/stare/probing/labels-vk.tar).
To convert STARE dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/stare.py /path/to/stare-images.tar /path/to/labels-ah.tar /path/to/labels-vk.tar
```
The script will make directory structure automatically.
|