File size: 5,692 Bytes
985cc7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import numpy as np
from mmseg.core.evaluation import eval_metrics, mean_dice, mean_iou
def get_confusion_matrix(pred_label, label, num_classes, ignore_index):
"""Intersection over Union
Args:
pred_label (np.ndarray): 2D predict map
label (np.ndarray): label 2D label map
num_classes (int): number of categories
ignore_index (int): index ignore in evaluation
"""
mask = (label != ignore_index)
pred_label = pred_label[mask]
label = label[mask]
n = num_classes
inds = n * label + pred_label
mat = np.bincount(inds, minlength=n**2).reshape(n, n)
return mat
# This func is deprecated since it's not memory efficient
def legacy_mean_iou(results, gt_seg_maps, num_classes, ignore_index):
num_imgs = len(results)
assert len(gt_seg_maps) == num_imgs
total_mat = np.zeros((num_classes, num_classes), dtype=np.float)
for i in range(num_imgs):
mat = get_confusion_matrix(
results[i], gt_seg_maps[i], num_classes, ignore_index=ignore_index)
total_mat += mat
all_acc = np.diag(total_mat).sum() / total_mat.sum()
acc = np.diag(total_mat) / total_mat.sum(axis=1)
iou = np.diag(total_mat) / (
total_mat.sum(axis=1) + total_mat.sum(axis=0) - np.diag(total_mat))
return all_acc, acc, iou
# This func is deprecated since it's not memory efficient
def legacy_mean_dice(results, gt_seg_maps, num_classes, ignore_index):
num_imgs = len(results)
assert len(gt_seg_maps) == num_imgs
total_mat = np.zeros((num_classes, num_classes), dtype=np.float)
for i in range(num_imgs):
mat = get_confusion_matrix(
results[i], gt_seg_maps[i], num_classes, ignore_index=ignore_index)
total_mat += mat
all_acc = np.diag(total_mat).sum() / total_mat.sum()
acc = np.diag(total_mat) / total_mat.sum(axis=1)
dice = 2 * np.diag(total_mat) / (
total_mat.sum(axis=1) + total_mat.sum(axis=0))
return all_acc, acc, dice
def test_metrics():
pred_size = (10, 30, 30)
num_classes = 19
ignore_index = 255
results = np.random.randint(0, num_classes, size=pred_size)
label = np.random.randint(0, num_classes, size=pred_size)
label[:, 2, 5:10] = ignore_index
all_acc, acc, iou = eval_metrics(
results, label, num_classes, ignore_index, metrics='mIoU')
all_acc_l, acc_l, iou_l = legacy_mean_iou(results, label, num_classes,
ignore_index)
assert all_acc == all_acc_l
assert np.allclose(acc, acc_l)
assert np.allclose(iou, iou_l)
all_acc, acc, dice = eval_metrics(
results, label, num_classes, ignore_index, metrics='mDice')
all_acc_l, acc_l, dice_l = legacy_mean_dice(results, label, num_classes,
ignore_index)
assert all_acc == all_acc_l
assert np.allclose(acc, acc_l)
assert np.allclose(dice, dice_l)
all_acc, acc, iou, dice = eval_metrics(
results, label, num_classes, ignore_index, metrics=['mIoU', 'mDice'])
assert all_acc == all_acc_l
assert np.allclose(acc, acc_l)
assert np.allclose(iou, iou_l)
assert np.allclose(dice, dice_l)
results = np.random.randint(0, 5, size=pred_size)
label = np.random.randint(0, 4, size=pred_size)
all_acc, acc, iou = eval_metrics(
results,
label,
num_classes,
ignore_index=255,
metrics='mIoU',
nan_to_num=-1)
assert acc[-1] == -1
assert iou[-1] == -1
all_acc, acc, dice = eval_metrics(
results,
label,
num_classes,
ignore_index=255,
metrics='mDice',
nan_to_num=-1)
assert acc[-1] == -1
assert dice[-1] == -1
all_acc, acc, dice, iou = eval_metrics(
results,
label,
num_classes,
ignore_index=255,
metrics=['mDice', 'mIoU'],
nan_to_num=-1)
assert acc[-1] == -1
assert dice[-1] == -1
assert iou[-1] == -1
def test_mean_iou():
pred_size = (10, 30, 30)
num_classes = 19
ignore_index = 255
results = np.random.randint(0, num_classes, size=pred_size)
label = np.random.randint(0, num_classes, size=pred_size)
label[:, 2, 5:10] = ignore_index
all_acc, acc, iou = mean_iou(results, label, num_classes, ignore_index)
all_acc_l, acc_l, iou_l = legacy_mean_iou(results, label, num_classes,
ignore_index)
assert all_acc == all_acc_l
assert np.allclose(acc, acc_l)
assert np.allclose(iou, iou_l)
results = np.random.randint(0, 5, size=pred_size)
label = np.random.randint(0, 4, size=pred_size)
all_acc, acc, iou = mean_iou(
results, label, num_classes, ignore_index=255, nan_to_num=-1)
assert acc[-1] == -1
assert iou[-1] == -1
def test_mean_dice():
pred_size = (10, 30, 30)
num_classes = 19
ignore_index = 255
results = np.random.randint(0, num_classes, size=pred_size)
label = np.random.randint(0, num_classes, size=pred_size)
label[:, 2, 5:10] = ignore_index
all_acc, acc, iou = mean_dice(results, label, num_classes, ignore_index)
all_acc_l, acc_l, iou_l = legacy_mean_dice(results, label, num_classes,
ignore_index)
assert all_acc == all_acc_l
assert np.allclose(acc, acc_l)
assert np.allclose(iou, iou_l)
results = np.random.randint(0, 5, size=pred_size)
label = np.random.randint(0, 4, size=pred_size)
all_acc, acc, iou = mean_dice(
results, label, num_classes, ignore_index=255, nan_to_num=-1)
assert acc[-1] == -1
assert iou[-1] == -1
|