File size: 6,522 Bytes
985cc7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Tutorial 4: Customize Models

## Customize optimizer

Assume you want to add a optimizer named as `MyOptimizer`, which has arguments `a`, `b`, and `c`.
You need to first implement the new optimizer in a file, e.g., in `mmseg/core/optimizer/my_optimizer.py`:

```python
from mmcv.runner import OPTIMIZERS
from torch.optim import Optimizer


@OPTIMIZERS.register_module
class MyOptimizer(Optimizer):

    def __init__(self, a, b, c)

```

Then add this module in `mmseg/core/optimizer/__init__.py` thus the registry will
find the new module and add it:

```python
from .my_optimizer import MyOptimizer
```

Then you can use `MyOptimizer` in `optimizer` field of config files.
In the configs, the optimizers are defined by the field `optimizer` like the following:

```python
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
```

To use your own optimizer, the field can be changed as

```python
optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)
```

We already support to use all the optimizers implemented by PyTorch, and the only modification is to change the `optimizer` field of config files.
For example, if you want to use `ADAM`, though the performance will drop a lot, the modification could be as the following.

```python
optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)
```

The users can directly set arguments following the [API doc](https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim) of PyTorch.

## Customize optimizer constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNoarm layers.
The users can do those fine-grained parameter tuning through customizing optimizer constructor.

```
from mmcv.utils import build_from_cfg

from mmcv.runner import OPTIMIZER_BUILDERS
from .cocktail_optimizer import CocktailOptimizer


@OPTIMIZER_BUILDERS.register_module
class CocktailOptimizerConstructor(object):

    def __init__(self, optimizer_cfg, paramwise_cfg=None):

    def __call__(self, model):

        return my_optimizer

```

## Develop new components

There are mainly 2 types of components in MMSegmentation.

- backbone: usually stacks of convolutional network to extract feature maps, e.g., ResNet, HRNet.
- head: the component for semantic segmentation map decoding.

### Add new backbones

Here we show how to develop new components with an example of MobileNet.

1. Create a new file `mmseg/models/backbones/mobilenet.py`.

```python
import torch.nn as nn

from ..registry import BACKBONES


@BACKBONES.register_module
class MobileNet(nn.Module):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # should return a tuple
        pass

    def init_weights(self, pretrained=None):
        pass
```

2. Import the module in `mmseg/models/backbones/__init__.py`.

```python
from .mobilenet import MobileNet
```

3. Use it in your config file.

```python
model = dict(
    ...
    backbone=dict(
        type='MobileNet',
        arg1=xxx,
        arg2=xxx),
    ...
```

### Add new heads

In MMSegmentation, we provide a base [BaseDecodeHead](https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/decode_head.py) for all segmentation head.
All newly implemented decode heads should be derived from it.
Here we show how to develop a new head with the example of [PSPNet](https://arxiv.org/abs/1612.01105) as the following.

First, add a new decode head in `mmseg/models/decode_heads/psp_head.py`.
PSPNet implements a decode head for segmentation decode.
To implement a decode head, basically we need to implement three functions of the new module as the following.

```python
@HEADS.register_module()
class PSPHead(BaseDecodeHead):

    def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs):
        super(PSPHead, self).__init__(**kwargs)

    def init_weights(self):

    def forward(self, inputs):

```

Next, the users need to add the module in the `mmseg/models/decode_heads/__init__.py` thus the corresponding registry could find and load them.

To config file of PSPNet is as the following

```python
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
    type='EncoderDecoder',
    pretrained='pretrain_model/resnet50_v1c_trick-2cccc1ad.pth',
    backbone=dict(
        type='ResNetV1c',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        dilations=(1, 1, 2, 4),
        strides=(1, 2, 1, 1),
        norm_cfg=norm_cfg,
        norm_eval=False,
        style='pytorch',
        contract_dilation=True),
    decode_head=dict(
        type='PSPHead',
        in_channels=2048,
        in_index=3,
        channels=512,
        pool_scales=(1, 2, 3, 6),
        dropout_ratio=0.1,
        num_classes=19,
        norm_cfg=norm_cfg,
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))

```

### Add new loss

Assume you want to add a new loss as `MyLoss` for segmentation decode.
To add a new loss function, the users need implement it in `mmseg/models/losses/my_loss.py`.
The decorator `weighted_loss` enable the loss to be weighted for each element.

```python
import torch
import torch.nn as nn

from ..builder import LOSSES
from .utils import weighted_loss

@weighted_loss
def my_loss(pred, target):
    assert pred.size() == target.size() and target.numel() > 0
    loss = torch.abs(pred - target)
    return loss

@LOSSES.register_module
class MyLoss(nn.Module):

    def __init__(self, reduction='mean', loss_weight=1.0):
        super(MyLoss, self).__init__()
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None):
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss = self.loss_weight * my_loss(
            pred, target, weight, reduction=reduction, avg_factor=avg_factor)
        return loss
```

Then the users need to add it in the `mmseg/models/losses/__init__.py`.

```python
from .my_loss import MyLoss, my_loss

```

To use it, modify the `loss_xxx` field.
Then you need to modify the `loss_decode` field in the head.
`loss_weight` could be used to balance multiple losses.

```python
loss_decode=dict(type='MyLoss', loss_weight=1.0))
```