test
/
FoodSeg103
/Swin-Transformer-Semantic-Segmentation-main
/tools
/convert_datasets
/chase_db1.py
import argparse | |
import os | |
import os.path as osp | |
import tempfile | |
import zipfile | |
import mmcv | |
CHASE_DB1_LEN = 28 * 3 | |
TRAINING_LEN = 60 | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Convert CHASE_DB1 dataset to mmsegmentation format') | |
parser.add_argument('dataset_path', help='path of CHASEDB1.zip') | |
parser.add_argument('--tmp_dir', help='path of the temporary directory') | |
parser.add_argument('-o', '--out_dir', help='output path') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
dataset_path = args.dataset_path | |
if args.out_dir is None: | |
out_dir = osp.join('data', 'CHASE_DB1') | |
else: | |
out_dir = args.out_dir | |
print('Making directories...') | |
mmcv.mkdir_or_exist(out_dir) | |
mmcv.mkdir_or_exist(osp.join(out_dir, 'images')) | |
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training')) | |
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation')) | |
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations')) | |
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training')) | |
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation')) | |
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir: | |
print('Extracting CHASEDB1.zip...') | |
zip_file = zipfile.ZipFile(dataset_path) | |
zip_file.extractall(tmp_dir) | |
print('Generating training dataset...') | |
assert len(os.listdir(tmp_dir)) == CHASE_DB1_LEN, \ | |
'len(os.listdir(tmp_dir)) != {}'.format(CHASE_DB1_LEN) | |
for img_name in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]: | |
img = mmcv.imread(osp.join(tmp_dir, img_name)) | |
if osp.splitext(img_name)[1] == '.jpg': | |
mmcv.imwrite( | |
img, | |
osp.join(out_dir, 'images', 'training', | |
osp.splitext(img_name)[0] + '.png')) | |
else: | |
# The annotation img should be divided by 128, because some of | |
# the annotation imgs are not standard. We should set a | |
# threshold to convert the nonstandard annotation imgs. The | |
# value divided by 128 is equivalent to '1 if value >= 128 | |
# else 0' | |
mmcv.imwrite( | |
img[:, :, 0] // 128, | |
osp.join(out_dir, 'annotations', 'training', | |
osp.splitext(img_name)[0] + '.png')) | |
for img_name in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]: | |
img = mmcv.imread(osp.join(tmp_dir, img_name)) | |
if osp.splitext(img_name)[1] == '.jpg': | |
mmcv.imwrite( | |
img, | |
osp.join(out_dir, 'images', 'validation', | |
osp.splitext(img_name)[0] + '.png')) | |
else: | |
mmcv.imwrite( | |
img[:, :, 0] // 128, | |
osp.join(out_dir, 'annotations', 'validation', | |
osp.splitext(img_name)[0] + '.png')) | |
print('Removing the temporary files...') | |
print('Done!') | |
if __name__ == '__main__': | |
main() | |