test
/
FoodSeg103
/Swin-Transformer-Semantic-Segmentation-main
/tools
/convert_datasets
/pascal_context.py
import argparse | |
import os.path as osp | |
from functools import partial | |
import mmcv | |
import numpy as np | |
from detail import Detail | |
from PIL import Image | |
_mapping = np.sort( | |
np.array([ | |
0, 2, 259, 260, 415, 324, 9, 258, 144, 18, 19, 22, 23, 397, 25, 284, | |
158, 159, 416, 33, 162, 420, 454, 295, 296, 427, 44, 45, 46, 308, 59, | |
440, 445, 31, 232, 65, 354, 424, 68, 326, 72, 458, 34, 207, 80, 355, | |
85, 347, 220, 349, 360, 98, 187, 104, 105, 366, 189, 368, 113, 115 | |
])) | |
_key = np.array(range(len(_mapping))).astype('uint8') | |
def generate_labels(img_id, detail, out_dir): | |
def _class_to_index(mask, _mapping, _key): | |
# assert the values | |
values = np.unique(mask) | |
for i in range(len(values)): | |
assert (values[i] in _mapping) | |
index = np.digitize(mask.ravel(), _mapping, right=True) | |
return _key[index].reshape(mask.shape) | |
mask = Image.fromarray( | |
_class_to_index(detail.getMask(img_id), _mapping=_mapping, _key=_key)) | |
filename = img_id['file_name'] | |
mask.save(osp.join(out_dir, filename.replace('jpg', 'png'))) | |
return osp.splitext(osp.basename(filename))[0] | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Convert PASCAL VOC annotations to mmsegmentation format') | |
parser.add_argument('devkit_path', help='pascal voc devkit path') | |
parser.add_argument('json_path', help='annoation json filepath') | |
parser.add_argument('-o', '--out_dir', help='output path') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
devkit_path = args.devkit_path | |
if args.out_dir is None: | |
out_dir = osp.join(devkit_path, 'VOC2010', 'SegmentationClassContext') | |
else: | |
out_dir = args.out_dir | |
json_path = args.json_path | |
mmcv.mkdir_or_exist(out_dir) | |
img_dir = osp.join(devkit_path, 'VOC2010', 'JPEGImages') | |
train_detail = Detail(json_path, img_dir, 'train') | |
train_ids = train_detail.getImgs() | |
val_detail = Detail(json_path, img_dir, 'val') | |
val_ids = val_detail.getImgs() | |
mmcv.mkdir_or_exist( | |
osp.join(devkit_path, 'VOC2010/ImageSets/SegmentationContext')) | |
train_list = mmcv.track_progress( | |
partial(generate_labels, detail=train_detail, out_dir=out_dir), | |
train_ids) | |
with open( | |
osp.join(devkit_path, 'VOC2010/ImageSets/SegmentationContext', | |
'train.txt'), 'w') as f: | |
f.writelines(line + '\n' for line in sorted(train_list)) | |
val_list = mmcv.track_progress( | |
partial(generate_labels, detail=val_detail, out_dir=out_dir), val_ids) | |
with open( | |
osp.join(devkit_path, 'VOC2010/ImageSets/SegmentationContext', | |
'val.txt'), 'w') as f: | |
f.writelines(line + '\n' for line in sorted(val_list)) | |
print('Done!') | |
if __name__ == '__main__': | |
main() | |