test / FoodSeg103 /tests /test_eval_hook.py
mccaly's picture
Upload 2805 files
985cc7f
raw
history blame
6.66 kB
import logging
import tempfile
from unittest.mock import MagicMock, patch
import mmcv.runner
import pytest
import torch
import torch.nn as nn
from mmcv.runner import obj_from_dict
from torch.utils.data import DataLoader, Dataset
from mmseg.apis import single_gpu_test
from mmseg.core import DistEvalHook, EvalHook
class ExampleDataset(Dataset):
def __getitem__(self, idx):
results = dict(img=torch.tensor([1]), img_metas=dict())
return results
def __len__(self):
return 1
class ExampleModel(nn.Module):
def __init__(self):
super(ExampleModel, self).__init__()
self.test_cfg = None
self.conv = nn.Conv2d(3, 3, 3)
def forward(self, img, img_metas, test_mode=False, **kwargs):
return img
def train_step(self, data_batch, optimizer):
loss = self.forward(**data_batch)
return dict(loss=loss)
def test_iter_eval_hook():
with pytest.raises(TypeError):
test_dataset = ExampleModel()
data_loader = [
DataLoader(
test_dataset,
batch_size=1,
sampler=None,
num_worker=0,
shuffle=False)
]
EvalHook(data_loader)
test_dataset = ExampleDataset()
test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
loader = DataLoader(test_dataset, batch_size=1)
model = ExampleModel()
data_loader = DataLoader(
test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False)
optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optimizer = obj_from_dict(optim_cfg, torch.optim,
dict(params=model.parameters()))
# test EvalHook
with tempfile.TemporaryDirectory() as tmpdir:
eval_hook = EvalHook(data_loader)
runner = mmcv.runner.IterBasedRunner(
model=model,
optimizer=optimizer,
work_dir=tmpdir,
logger=logging.getLogger())
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 1)
test_dataset.evaluate.assert_called_with([torch.tensor([1])],
logger=runner.logger)
def test_epoch_eval_hook():
with pytest.raises(TypeError):
test_dataset = ExampleModel()
data_loader = [
DataLoader(
test_dataset,
batch_size=1,
sampler=None,
num_worker=0,
shuffle=False)
]
EvalHook(data_loader, by_epoch=True)
test_dataset = ExampleDataset()
test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
loader = DataLoader(test_dataset, batch_size=1)
model = ExampleModel()
data_loader = DataLoader(
test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False)
optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optimizer = obj_from_dict(optim_cfg, torch.optim,
dict(params=model.parameters()))
# test EvalHook with interval
with tempfile.TemporaryDirectory() as tmpdir:
eval_hook = EvalHook(data_loader, by_epoch=True, interval=2)
runner = mmcv.runner.EpochBasedRunner(
model=model,
optimizer=optimizer,
work_dir=tmpdir,
logger=logging.getLogger())
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 2)
test_dataset.evaluate.assert_called_once_with([torch.tensor([1])],
logger=runner.logger)
def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False):
results = single_gpu_test(model, data_loader)
return results
@patch('mmseg.apis.multi_gpu_test', multi_gpu_test)
def test_dist_eval_hook():
with pytest.raises(TypeError):
test_dataset = ExampleModel()
data_loader = [
DataLoader(
test_dataset,
batch_size=1,
sampler=None,
num_worker=0,
shuffle=False)
]
DistEvalHook(data_loader)
test_dataset = ExampleDataset()
test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
loader = DataLoader(test_dataset, batch_size=1)
model = ExampleModel()
data_loader = DataLoader(
test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False)
optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optimizer = obj_from_dict(optim_cfg, torch.optim,
dict(params=model.parameters()))
# test DistEvalHook
with tempfile.TemporaryDirectory() as tmpdir:
eval_hook = DistEvalHook(data_loader)
runner = mmcv.runner.IterBasedRunner(
model=model,
optimizer=optimizer,
work_dir=tmpdir,
logger=logging.getLogger())
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 1)
test_dataset.evaluate.assert_called_with([torch.tensor([1])],
logger=runner.logger)
@patch('mmseg.apis.multi_gpu_test', multi_gpu_test)
def test_dist_eval_hook_epoch():
with pytest.raises(TypeError):
test_dataset = ExampleModel()
data_loader = [
DataLoader(
test_dataset,
batch_size=1,
sampler=None,
num_worker=0,
shuffle=False)
]
DistEvalHook(data_loader)
test_dataset = ExampleDataset()
test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
loader = DataLoader(test_dataset, batch_size=1)
model = ExampleModel()
data_loader = DataLoader(
test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False)
optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optimizer = obj_from_dict(optim_cfg, torch.optim,
dict(params=model.parameters()))
# test DistEvalHook
with tempfile.TemporaryDirectory() as tmpdir:
eval_hook = DistEvalHook(data_loader, by_epoch=True, interval=2)
runner = mmcv.runner.EpochBasedRunner(
model=model,
optimizer=optimizer,
work_dir=tmpdir,
logger=logging.getLogger())
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 2)
test_dataset.evaluate.assert_called_with([torch.tensor([1])],
logger=runner.logger)