test
/
FoodSeg103
/Swin-Transformer-Semantic-Segmentation-main
/configs
/_base_
/datasets
/ade20k.py
# dataset settings | |
dataset_type = 'ADE20KDataset' | |
data_root = 'data/ade/ADEChallengeData2016' | |
img_norm_cfg = dict( | |
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | |
crop_size = (512, 512) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations', reduce_zero_label=True), | |
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), | |
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PhotoMetricDistortion'), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | |
dict(type='DefaultFormatBundle'), | |
dict(type='Collect', keys=['img', 'gt_semantic_seg']), | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='MultiScaleFlipAug', | |
img_scale=(2048, 512), | |
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], | |
flip=False, | |
transforms=[ | |
dict(type='Resize', keep_ratio=True), | |
dict(type='RandomFlip'), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='ImageToTensor', keys=['img']), | |
dict(type='Collect', keys=['img']), | |
]) | |
] | |
data = dict( | |
samples_per_gpu=4, | |
workers_per_gpu=4, | |
train=dict( | |
type=dataset_type, | |
data_root=data_root, | |
img_dir='images/training', | |
ann_dir='annotations/training', | |
pipeline=train_pipeline), | |
val=dict( | |
type=dataset_type, | |
data_root=data_root, | |
img_dir='images/validation', | |
ann_dir='annotations/validation', | |
pipeline=test_pipeline), | |
test=dict( | |
type=dataset_type, | |
data_root=data_root, | |
img_dir='images/validation', | |
ann_dir='annotations/validation', | |
pipeline=test_pipeline)) | |