test
/
FoodSeg103
/Swin-Transformer-Semantic-Segmentation-main
/configs
/cgnet
/cgnet_680x680_60k_cityscapes.py
_base_ = [ | |
'../_base_/models/cgnet.py', '../_base_/datasets/cityscapes.py', | |
'../_base_/default_runtime.py' | |
] | |
# optimizer | |
optimizer = dict(type='Adam', lr=0.001, eps=1e-08, weight_decay=0.0005) | |
optimizer_config = dict() | |
# learning policy | |
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) | |
# runtime settings | |
total_iters = 60000 | |
checkpoint_config = dict(by_epoch=False, interval=4000) | |
evaluation = dict(interval=4000, metric='mIoU') | |
img_norm_cfg = dict( | |
mean=[72.39239876, 82.90891754, 73.15835921], std=[1, 1, 1], to_rgb=True) | |
crop_size = (680, 680) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations'), | |
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), | |
dict(type='RandomCrop', crop_size=crop_size), | |
dict(type='RandomFlip', flip_ratio=0.5), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | |
dict(type='DefaultFormatBundle'), | |
dict(type='Collect', keys=['img', 'gt_semantic_seg']), | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='MultiScaleFlipAug', | |
img_scale=(2048, 1024), | |
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], | |
flip=False, | |
transforms=[ | |
dict(type='Resize', keep_ratio=True), | |
dict(type='RandomFlip'), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='ImageToTensor', keys=['img']), | |
dict(type='Collect', keys=['img']), | |
]) | |
] | |
data = dict( | |
samples_per_gpu=8, | |
workers_per_gpu=8, | |
train=dict(pipeline=train_pipeline), | |
val=dict(pipeline=test_pipeline), | |
test=dict(pipeline=test_pipeline)) | |