mcuri commited on
Commit
f8ebf40
·
1 Parent(s): b5eaad3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -25
app.py CHANGED
@@ -1,26 +1,20 @@
1
  import streamlit as st
2
- import pandas as pd
3
- import pickle
4
- # Load Model
5
- model = pickle.load(open('logreg_model.pkl', 'rb'))
6
- st.title('Iris Variety Prediction')
7
- # Form
8
- with st.form(key='form_parameters'):
9
- sepal_length = st.slider('Sepal Length', 4.0, 8.0, 4.0)
10
- sepal_width = st.slider('Sepal Width', 2.0, 4.5, 2.0)
11
- petal_length = st.slider('Petal Length', 1.0, 7.0, 1.0)
12
- petal_width = st.slider('Petal Width', 0.1, 2.5, 0.1)
13
- st.markdown('---')
14
- submitted = st.form_submit_button('Predict')
15
- # Data Inference
16
- data_inf = {
17
- 'sepal.length': sepal_length,
18
- 'sepal.width': sepal_width,
19
- 'petal.length': petal_length,
20
- 'petal.width': petal_width
21
- }
22
- data_inf = pd.DataFrame([data_inf])
23
- if submitted:
24
- # Predict using Logistic Regression
25
- y_pred_inf = model.predict(data_inf)
26
- st.write('## Iris Variety = '+ str(y_pred_inf))
 
1
  import streamlit as st
2
+ from transformers import pipeline
3
+ from PIL import Image
4
+
5
+ pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
6
+
7
+ st.title("Hot Dog? Or Not?")
8
+
9
+ file_name = st.file_uploader("Upload a hot dog candidate image")
10
+
11
+ if file_name is not None:
12
+ col1, col2 = st.columns(2)
13
+
14
+ image = Image.open(file_name)
15
+ col1.image(image, use_column_width=True)
16
+ predictions = pipeline(image)
17
+
18
+ col2.header("Probabilities")
19
+ for p in predictions:
20
+ col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")