Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,20 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
}
|
22 |
-
data_inf = pd.DataFrame([data_inf])
|
23 |
-
if submitted:
|
24 |
-
# Predict using Logistic Regression
|
25 |
-
y_pred_inf = model.predict(data_inf)
|
26 |
-
st.write('## Iris Variety = '+ str(y_pred_inf))
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
6 |
+
|
7 |
+
st.title("Hot Dog? Or Not?")
|
8 |
+
|
9 |
+
file_name = st.file_uploader("Upload a hot dog candidate image")
|
10 |
+
|
11 |
+
if file_name is not None:
|
12 |
+
col1, col2 = st.columns(2)
|
13 |
+
|
14 |
+
image = Image.open(file_name)
|
15 |
+
col1.image(image, use_column_width=True)
|
16 |
+
predictions = pipeline(image)
|
17 |
+
|
18 |
+
col2.header("Probabilities")
|
19 |
+
for p in predictions:
|
20 |
+
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
|
|
|
|
|
|
|
|
|
|
|
|