Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline | |
def main(): | |
# Set up the Streamlit app title and description | |
st.title("Hugging Face Model Summarization") | |
st.write("This app uses a Hugging Face model to summarize text. Enter your text below and click 'Summarize'.") | |
# Initialize the summarization pipeline from Hugging Face | |
summarizer = pipeline("summarization") | |
# Create a text area for user input | |
text = st.text_area("Enter text here:", placeholder="Type your text here...") | |
# Button to trigger summarization | |
if st.button("Summarize"): | |
if text: | |
try: | |
# Generate the summary using the Hugging Face model | |
summary = summarizer(text, max_length=130, min_length=30, do_sample=False) | |
st.write("Summary:") | |
st.write(summary[0]['summary_text']) | |
except Exception as e: | |
st.error(f"An error occurred during summarization: {e}") | |
else: | |
st.error("Please enter some text to summarize.") | |
if __name__ == "__main__": | |
main() |