File size: 11,459 Bytes
db6a3b7
3057b36
7d475c1
db6a3b7
cd41f5f
690b53e
db6a3b7
9880f3d
7d475c1
db6a3b7
9880f3d
db6a3b7
 
9880f3d
db6a3b7
 
bd46f72
cd41f5f
d7b1815
 
5dfa9c0
cd41f5f
 
 
e92b7dd
cd41f5f
 
 
 
b7b00e2
e92b7dd
5dfa9c0
e92b7dd
b7b00e2
 
 
 
 
9880f3d
 
77db232
9880f3d
 
 
 
 
 
 
 
 
 
 
e92b7dd
 
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b00e2
9880f3d
cd41f5f
e92b7dd
5dfa9c0
e92b7dd
cd41f5f
 
3057b36
cd41f5f
b7b00e2
cd41f5f
 
 
 
 
b7b00e2
cd41f5f
 
e92b7dd
5dfa9c0
e92b7dd
cd41f5f
e92b7dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d475c1
15fe7bc
 
b7b00e2
7d475c1
b7b00e2
cd41f5f
9880f3d
db6a3b7
b7b00e2
cd41f5f
 
 
 
 
 
e92b7dd
5dfa9c0
e92b7dd
cd41f5f
b7b00e2
690b53e
b7b00e2
db6a3b7
cd41f5f
db6a3b7
 
b7b00e2
 
e92b7dd
5dfa9c0
e92b7dd
b7b00e2
 
 
 
 
 
 
6534ad9
 
5dfa9c0
6534ad9
b7b00e2
6534ad9
b7b00e2
6534ad9
5dfa9c0
6534ad9
5dfa9c0
6534ad9
5dfa9c0
6534ad9
 
b7b00e2
5dfa9c0
cd41f5f
7d475c1
 
c68d2cb
7d475c1
c68d2cb
7d475c1
 
db6a3b7
 
b7b00e2
 
 
 
c68d2cb
 
b7b00e2
c68d2cb
bd46f72
 
 
 
 
690b53e
 
bd46f72
 
690b53e
 
b7b00e2
77db232
 
bd46f72
 
 
 
 
b7b00e2
 
 
c68d2cb
b7b00e2
c68d2cb
 
 
db6a3b7
 
b7b00e2
db894f7
b7b00e2
 
 
e92b7dd
2e78ab8
e92b7dd
5dfa9c0
c68d2cb
b7b00e2
 
c68d2cb
5dfa9c0
b7b00e2
 
 
 
e92b7dd
5dfa9c0
cd41f5f
 
e92b7dd
b7b00e2
 
 
 
 
e92b7dd
db6a3b7
cd41f5f
 
 
 
db6a3b7
c68d2cb
2e78ab8
db6a3b7
b7b00e2
 
db6a3b7
e92b7dd
db6a3b7
b7b00e2
 
db6a3b7
e92b7dd
db6a3b7
 
2e78ab8
db6a3b7
 
cd41f5f
db6a3b7
 
e92b7dd
b7b00e2
 
 
 
 
 
 
 
e92b7dd
db6a3b7
cd41f5f
db6a3b7
 
 
5dfa9c0
db6a3b7
4ac6887
db6a3b7
c666caf
5dfa9c0
c666caf
 
e92b7dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

# Funciones auxiliares
def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)

def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)

def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
    """
    Preprocesa una lista de imágenes.
    """
    images = [image[0] for image in images]
    processed_images = [pipeline.preprocess_image(image) for image in images]
    return processed_images

def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }

def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    return gs, mesh

def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Obtiene una semilla aleatoria.
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed

@spaces.GPU
def image_to_3d(
    multiimages: List[Tuple[Image.Image, str]],
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    multiimage_algo: Literal["multidiffusion", "stochastic"],
    req: gr.Request,
) -> Tuple[dict, str]:
    """
    Convierte múltiples imágenes en un modelo 3D.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    outputs = pipeline.run_multi_image(
        [image[0] for image in multiimages],
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
        mode=multiimage_algo,
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    return state, video_path

@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extrae un archivo GLB del modelo 3D.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path

@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    """
    Extrae un archivo Gaussiano del modelo 3D.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path

def prepare_multi_example() -> List[Tuple[str, str]]:
    """
    Prepara ejemplos de múltiples imágenes para la galería.
    """
    multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
    examples = []
    for case in multi_case:
        case_images = []
        for i in range(1, 4):  # Suponemos 3 vistas por caso
            img_path = f'assets/example_multi_image/{case}_{i}.png'
            if os.path.exists(img_path):  # Asegurarse de que la imagen existe
                case_images.append((img_path, f"View {i}"))
        if case_images:  # Solo añadir casos con imágenes válidas
            examples.append(case_images)
    return examples

# Interfaz Gradio
with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    * Upload multiple images of an object from different views and click "Generate" to create a 3D asset.
    * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
    ✨New: Experimental multi-image support and Gaussian file extraction.
    """)
    
    with gr.Row():
        with gr.Column():
            with gr.Tabs() as input_tabs:
                with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
                    multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
                    gr.Markdown("""
                    Input different views of the object in separate images. 
                    NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
                    """)
                    
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
            
            generate_btn = gr.Button("Generate")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
            
            gr.Markdown("""
            NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
            """)
        
        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
            
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)  

    output_buf = gr.State()

    # Ejemplos de imágenes múltiples
    with gr.Row(visible=True) as multiimage_example:
        examples_multi = gr.Examples(
            examples=prepare_multi_example(),
            inputs=[multiimage_prompt],
            fn=lambda x: x,  # Pasar la entrada directamente (sin preprocesamiento adicional)
            outputs=[multiimage_prompt],
            run_on_click=True,
            examples_per_page=8,
        )

    # Manejadores
    demo.load(start_session)
    demo.unload(end_session)

    multiimage_prompt.upload(
        preprocess_images,
        inputs=[multiimage_prompt],
        outputs=[multiimage_prompt],
    )

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        image_to_3d,
        inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
        outputs=[output_buf, video_output],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    video_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )

    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )

# Lanzar la aplicación Gradio
if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
    pipeline.cuda()
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))  # Precargar rembg
    except:
        pass
    demo.launch(show_error=True)